多元函数极值与
A
A
A及
Δ
=
B
2
−
A
C
\Delta =B^2-AC
Δ=B2−AC的关系
结论:
Δ
=
B
2
−
A
C
<
0
\Delta =B^2-AC < 0
Δ=B2−AC<0时,
A
>
0
A>0
A>0取极小值,
A
<
0
A<0
A<0取极大值
Δ
=
B
2
−
A
C
>
0
\Delta =B^2-AC > 0
Δ=B2−AC>0时,无极值
Δ
=
B
2
−
A
C
=
0
\Delta =B^2-AC = 0
Δ=B2−AC=0时,需要进一步讨论,一般从极值定义去讨论
那么,这个结论是怎么来的?
对于一元函数
f
′
(
x
)
=
0
,
f
′
′
(
x
)
>
0
f'(x) = 0,f”(x)>0
f′(x)=0,f′′(x)>0取极小值,
f
′
′
(
x
)
<
0
f”(x)<0
f′′(x)<0取极大值。
对于多元函数
∂
f
∂
l
=
0
,
∂
2
f
∂
l
2
>
0
\dfrac{\partial f}{\partial l} = 0,\dfrac{\partial^2 f}{\partial l^2}>0
∂l∂f=0,∂l2∂2f>0取极小值,
∂
2
f
∂
l
2
<
0
\dfrac{\partial^2 f}{\partial l^2}<0
∂l2∂2f<0取极大值。
求多元函数极值时,我们关注的不是偏导数而是方向导数,因为
f
(
x
,
y
)
f(x,y)
f(x,y)沿任意方向都可以变化,而偏导数只描述了沿x,y方向的变化,方向导数则可描述随意方向。
∂
f
∂
l
=
▽
f
⋅
(
c
o
s
α
,
c
o
s
β
)
=
f
x
′
c
o
s
α
+
f
y
′
c
o
s
β
\dfrac{\partial f}{\partial l} = \bigtriangledown f·(cos\alpha,cos\beta) = f’_xcos\alpha+f’_ycos\beta
∂l∂f=▽f⋅(cosα,cosβ)=fx′cosα+fy′cosβ
令
g
(
x
,
y
)
=
∂
f
∂
l
=
f
x
′
c
o
s
α
+
f
y
′
c
o
s
β
g(x,y) = \dfrac{\partial f}{\partial l} = f’_xcos\alpha+f’_ycos\beta
g(x,y)=∂l∂f=fx′cosα+fy′cosβ
∂
g
∂
l
=
▽
g
⋅
(
c
o
s
α
,
c
o
s
β
)
=
c
o
s
2
β
[
f
x
x
′
′
(
c
o
s
α
c
o
s
β
)
2
+
2
f
x
y
′
′
c
o
s
α
c
o
s
β
+
f
y
y
′
′
]
\dfrac{\partial g}{\partial l} = \bigtriangledown g·(cos\alpha,cos\beta) = cos^2\beta[f”_{xx}(\dfrac{cos\alpha}{cos\beta})^2+2f”_{xy}\dfrac{cos\alpha}{cos\beta}+f”_{yy}]
∂l∂g=▽g⋅(cosα,cosβ)=cos2β[fxx′′(cosβcosα)2+2fxy′′cosβcosα+fyy′′]
∂
2
f
∂
l
2
=
c
o
s
2
β
[
f
x
x
′
′
(
c
o
s
α
c
o
s
β
)
2
+
2
f
x
y
′
′
c
o
s
α
c
o
s
β
+
f
y
y
′
′
]
\dfrac{\partial^2 f}{\partial l^2} =cos^2\beta[f”_{xx}(\dfrac{cos\alpha}{cos\beta})^2+2f”_{xy}\dfrac{cos\alpha}{cos\beta}+f”_{yy}]
∂l2∂2f=cos2β[fxx′′(cosβcosα)2+2fxy′′cosβcosα+fyy′′]
令
A
=
f
x
x
′
′
,
B
=
f
x
y
′
′
,
C
=
f
y
y
′
′
A =f”_{xx},B =f”_{xy},C = f”_{yy}
A=fxx′′,B=fxy′′,C=fyy′′
要使得
∂
2
f
∂
l
2
>
0
\dfrac{\partial^2 f}{\partial l^2}>0
∂l2∂2f>0,则
A
>
0
,
Δ
<
0
A>0,\Delta<0
A>0,Δ<0,应该注意的是
Δ
<
0
\Delta<0
Δ<0这个条件是必须满足的,因为
∂
2
f
∂
l
2
>
0
\dfrac{\partial^2 f}{\partial l^2}>0
∂l2∂2f>0是一个恒成立问题。
其他情况同理。