0x00 前言
《视觉slam十四讲从理论到实践》第四讲习题自测解析。
借助自身知识储备和搜索引擎后完成习题,仅供参考。
部分答案会觉得没有说明的必要就会略
0x01 前置知识
李群的定义
群(Group)是一种集合加上一种运算的代数结构。我们把集合记作
A
A
A,运算记作
⋅
\cdot
⋅ ,那么群可以记作
G
=
(
A
,
⋅
)
G=(A,\cdot)
G=(A,⋅) 。群要求这个运算满足以下几个条件:
- 封闭性:
∀
a
1
,
a
2
∈
A
,
a
1
⋅
a
2
∈
A
.
\forall a_1,a_2\in A,\quad a_1\cdot a_2\in A.
- 结合律:
∀
a
1
,
a
2
,
a
3
∈
A
,
(
a
1
⋅
a
2
)
⋅
a
3
=
a
1
⋅
(
a
2
⋅
a
3
)
.
\forall a_1,a_2,a_3\in A,\quad (a_1\cdot a_2)\cdot a_3=a_1\cdot(a_2\cdot a_3).
- 幺元:
∃
a
0
∈
A
,
s
.
t
.
∀
a
∈
A
,
a
0
⋅
a
=
a
⋅
a
0
=
a
.
\exist a_0\in A,\quad s.t.\quad\forall a\in A,\quad a_0\cdot a=a\cdot a_0=a.
- 逆:
∀
a
∈
A
,
∃
a
−
1
∈
A
,
s
.
t
.
a
⋅
a
−
1
=
a
0
.
\forall a\in A,\quad\exist a^{-1}\in A,\quad s.t.\quad a\cdot a^{-1}=a_0.
李代数的定义
李代数由一个集合
V
\mathbb{V}
V 、一个数域
F
\mathbb{F}
F 和一个二元运算
[
,
]
[,]
[,] 组成。如果它们满足以下几个性质,则称
(
V
,
F
,
[
,
]
)
(\mathbb{V},\mathbb{F},[,])
(V,F,[,]) 为一个李代数,记作
g
g
g。
- 封闭性
∀
X
,
Y
∈
V
,
[
X
,
Y
]
∈
V
.
\forall X,Y\in\mathbb{V},[X,Y]\in\mathbb{V}.
- 双线性
∀
X
,
Y
,
Z
∈
V
,
a
,
b
∈
F
,
有
\forall X,Y,Z\in\mathbb{V},a,b\in\mathbb{F},有
[
a
X
+
b
Y
,
Z
]
=
a
[
X
,
Z
]
+
b
[
Y
,
Z
]
,
[
Z
,
a
X
+
b
Y
]
=
a
[
Z
,
X
]
+
b
[
Z
,
Y
]
.
[aX+bY,Z]=a[X,Z]+b[Y,Z],\qquad[Z,aX+bY]=a[Z,X]+b[Z,Y].
[aX+bY,Z]=a[X,Z]+b[Y,Z],[Z,aX+bY]=a[Z,X]+b[Z,Y].
- 自反性
∀
X
∈
V
,
[
X
,
X
]
=
0.
\forall X\in\mathbb{V},[X,X]=0.
- 雅可比等价
∀
X
,
Y
,
Z
∈
V
,
[
X
,
[
Y
,
Z
]
]
+
[
Z
,
[
X
,
Y
]
]
+
[
Y
,
[
Z
,
X
]
]
=
0.
\forall X,Y,Z\in\mathbb{V},[X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=0.
0x02 习题部分
1、验证
S
O
(
3
)
、
S
E
(
3
)
和
S
i
m
(
3
)
SO(3)、SE(3)和Sim(3)
SO(3)、SE(3)和Sim(3)关于乘法成群。
验证
S
O
(
3
)
SO(3)
SO(3)
S
O
(
3
)
=
{
R
∈
R
3
×
3
∣
R
R
T
=
I
,
d
e
t
(
R
)
=
1
}
SO(3)=\left\{R\in\mathbb{R}^{3\times3}|RR^T=I,det(R)=1\right\}
SO(3)={R∈R3×3∣RRT=I,det(R)=1}
封闭性
从旋转矩阵的定义正交性入手,设
R
=
R
1
R
2
∈
R
3
×
3
R=R_1R_2\in\mathbb{R}^{3\times3}
R=R1R2∈R3×3,
R
R
T
=
R
1
R
2
(
R
1
R
2
)
T
=
R
1
R
2
R
2
T
R
1
T
=
R
1
I
R
1
T
=
I
RR^T=R_1R_2(R_1R_2)^T=R_1R_2R_2^TR_1^T=R_1IR_1^T=I
RRT=R1R2(R1R2)T=R1R2R2TR1T=R1IR1T=I
所以
R
=
R
1
R
2
∈
S
O
(
3
)
R=R_1R_2\in SO(3)
R=R1R2∈SO(3)
满足封闭性
结合律
由矩阵乘法规律可知,矩阵乘法满足结合律,即满足
(
R
1
⋅
R
2
)
⋅
R
3
=
R
1
⋅
(
R
2
⋅
R
3
)
(R_1\cdot R_2)\cdot R_3=R_1\cdot (R_2\cdot R_3)
(R1⋅R2)⋅R3=R1⋅(R2⋅R3) 。
满足结合律
幺元
存在
R
=
I
,
R=I,
R=I, 使得
I
R
1
=
R
1
I
=
R
1
IR_1=R_1I=R_1
IR1=R1I=R1.
满足幺元
逆
设矩阵
R
∈
S
O
(
3
)
R\in SO(3)
R∈SO(3) ,由正交性可知,
∃
R
−
1
=
R
T
\exist R^{-1}=R^T
∃R−1=RT ,使得
R
R
−
1
=
I
.
RR^{-1}=I.
RR−1=I.
满足逆
验证
S
E
(
3
)
SE(3)
SE(3)
S
E
(
3
)
=
{
T
=
[
R
t
0
T
1
]
∈
R
4
×
4
∣
R
∈
S
O
(
3
)
,
t
∈
R
3
}
SE(3)=\left\{T=\left[\begin{matrix}R&t\\0^T&1\end{matrix}\right]\in\mathbb{R}^{4\times4}|R\in SO(3),t\in\mathbb{R}^3\right\}
SE(3)={T=[R0Tt1]∈R4×4∣R∈SO(3),t∈R3}
封闭性
设
T
1
,
T
2
∈
S
E
(
3
)
T_1,T_2\in SE(3)
T1,T2∈SE(3),
T
1
T
2
=
[
R
1
t
1
0
T
1
]
[
R
2
t
2
0
T
1
]
=
[
R
1
R
2
R
1
t
2
+
t
1
0
T
1
]
T_1T_2=\left[\begin{matrix}R_1&t_1\\0^T&1\end{matrix}\right] \left[\begin{matrix}R_2&t_2\\0^T&1\end{matrix}\right]= \left[\begin{matrix}R_1R_2&R_1t_2+t_1\\0^T&1\end{matrix}\right]
T1T2=[R10Tt11][R20Tt21]=[R1R20TR1t2+t11]
由
S
O
(
3
)
SO(3)
SO(3) 的封闭性可知,
R
1
R
2
∈
S
O
(
3
)
R_1R_2\in SO(3)
R1R2∈SO(3) ,由矩阵的运算规律可知
R
1
t
2
+
t
1
∈
R
3
R_1t_2+t_1\in\mathbb{R}^3
R1t2+t1∈R3
所以
T
1
T
2
∈
S
E
(
3
)
T_1T_2\in SE(3)
T1T2∈SE(3)
满足封闭性
结合律
由矩阵乘法规律可知,矩阵乘法满足结合律,即满足
(
T
1
⋅
T
2
)
⋅
T
3
=
T
1
⋅
(
T
2
⋅
T
3
)
(T_1\cdot T_2)\cdot T_3=T_1\cdot (T_2\cdot T_3)
(T1⋅T2)⋅T3=T1⋅(T2⋅T3) 。
满足结合律
幺元
存在
T
=
I
,
T=I,
T=I, 使得
I
T
1
=
T
1
I
=
T
1
IT_1=T_1I=T_1
IT1=T1I=T1.
满足幺元
逆
设矩阵
T
∈
S
E
(
3
)
T\in SE(3)
T∈SE(3) ,易得
R
∈
S
O
(
3
)
R\in SO(3)
R∈SO(3) ,是一个满秩矩阵,所以
T
T
T 是一个满秩矩阵,所以
T
T
T 可逆,
∃
T
−
1
\exist\;T^{-1}
∃T−1 ,使得
T
T
−
1
=
I
.
TT^{-1}=I.
TT−1=I.
满足逆
验证
S
i
m
(
3
)
Sim(3)
Sim(3)
略
2、验证
(
R
3
,
R
,
×
)
(\mathbb{R}^3,\mathbb{R},\times)
(R3,R,×)构成李代数。
封闭性
设
a
⃗
,
b
⃗
∈
R
3
\vec{a},\vec{b}\in\mathbb{R}^3
a,b∈R3,
根据叉积的定义:
a
⃗
×
b
⃗
=
∣
i
⃗
j
⃗
k
⃗
a
1
a
2
a
3
b
1
b
2
b
3
∣
=
(
a
2
b
3
−
a
3
b
2
)
i
⃗
+
(
a
3
b
1
−
a
1
b
3
)
j
⃗
+
(
a
1
b
2
−
a
2
b
1
)
k
⃗
=
[
a
2
b
3
−
a
3
b
2
a
3
b
1
−
a
1
b
3
a
1
b
2
−
a
2
b
1
]
∈
R
3
(2.1)
\vec{a}\times\vec{b}=\left|\begin{matrix} \vec{i}&\vec{j}&\vec{k}\\ a_1& a_2&a_3\\ b_1&b_2&b_3 \end{matrix}\right|=(a_2b_3-a_3b_2)\vec{i}+(a_3b_1-a_1b_3)\vec{j}+(a_1b_2-a_2b_1)\vec{k}=\left[\begin{matrix} a_2b_3-a_3b_2\\ a_3b_1-a_1b_3\\ a_1b_2-a_2b_1 \end{matrix}\right]\in\mathbb{R}^3\tag{2.1}
a×b=∣∣∣∣∣∣ia1b1ja2b2ka3b3∣∣∣∣∣∣=(a2b3−a3b2)i+(a3b1−a1b3)j+(a1b2−a2b1)k=⎣⎡a2b3−a3b2a3b1−a1b3a1b2−a2b1⎦⎤∈R3(2.1)
满足封闭性
双线性
设
a
⃗
,
b
⃗
,
c
⃗
∈
R
3
,
α
,
β
∈
R
\vec{a},\vec{b},\vec{c}\in\mathbb{R}^3,\alpha,\beta\in\mathbb{R}
a,b,c∈R3,α,β∈R,
[
a
X
+
b
Y
,
Z
]
=
(
α
a
⃗
+
β
b
⃗
)
×
c
⃗
=
α
a
⃗
×
c
⃗
+
β
b
⃗
×
c
⃗
⋯
分
配
律
=
α
(
a
⃗
×
c
⃗
)
+
β
(
b
⃗
×
c
⃗
)
⋯
常
数
系
数
完
全
可
以
提
出
来
=
a
[
X
,
Z
]
+
b
[
Y
,
Z
]
(2.2)
\begin{aligned} &\quad[aX+bY,Z]=(\alpha\vec{a}+\beta\vec{b})\times\vec{c}\\ &=\alpha\vec{a}\times\vec{c}+\beta\vec{b}\times\vec{c}&\cdots&分配律\\ &=\alpha(\vec{a}\times\vec{c})+\beta(\vec{b}\times\vec{c})&\cdots&常数系数完全可以提出来\tag{2.2}\\ &=a[X,Z]+b[Y,Z] \end{aligned}
[aX+bY,Z]=(αa+βb)×c=αa×c+βb×c=α(a×c)+β(b×c)=a[X,Z]+b[Y,Z]⋯⋯分配律常数系数完全可以提出来(2.2)
同理
[
Z
,
a
X
+
b
Y
]
=
α
(
c
⃗
×
a
⃗
)
+
β
(
c
⃗
×
b
⃗
)
=
a
[
Z
,
X
]
+
b
[
Z
,
Y
]
[Z,aX+bY]=\alpha(\vec{c}\times\vec{a})+\beta(\vec{c}\times\vec{b})=a[Z,X]+b[Z,Y]
[Z,aX+bY]=α(c×a)+β(c×b)=a[Z,X]+b[Z,Y]
满足双线性
自反性
设
a
⃗
∈
R
3
\vec{a}\in\mathbb{R}^3
a∈R3
a
⃗
×
a
⃗
=
∣
a
⃗
∣
2
sin
<
a
⃗
,
a
⃗
>
=
0
(2.3)
\vec{a}\times\vec{a}={\left|\vec{a}\right|}^2\sin{<\vec{a},\vec{a}>}=0\tag{2.3}
a×a=∣a∣2sin<a,a>=0(2.3)
满足自反性
雅可比等价
设
a
⃗
,
b
⃗
,
c
⃗
∈
R
3
\vec{a},\vec{b},\vec{c}\in\mathbb{R}^3
a,b,c∈R3,
[
X
,
[
Y
,
Z
]
]
+
[
Z
,
[
X
,
Y
]
]
+
[
Y
,
[
Z
,
X
]
]
=
a
⃗
×
(
b
⃗
×
c
⃗
)
+
c
⃗
×
(
a
⃗
×
b
⃗
)
+
b
⃗
×
(
c
⃗
×
a
⃗
)
(2.4)
[X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=\vec{a}\times(\vec{b}\times\vec{c})+\vec{c}\times(\vec{a}\times\vec{b})+\vec{b}\times(\vec{c}\times\vec{a})\tag{2.4}
[X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=a×(b×c)+c×(a×b)+b×(c×a)(2.4)
将
a
⃗
,
b
⃗
,
c
⃗
\vec{a},\vec{b},\vec{c}
a,b,c 依次轮换得
b
⃗
×
(
c
⃗
×
a
⃗
)
+
a
⃗
×
(
b
⃗
×
c
⃗
)
+
c
⃗
×
(
a
⃗
×
b
⃗
)
(2.5)
\vec{b}\times(\vec{c}\times\vec{a})+\vec{a}\times(\vec{b}\times\vec{c})+\vec{c}\times(\vec{a}\times\vec{b})\tag{2.5}
b×(c×a)+a×(b×c)+c×(a×b)(2.5)
易得式
(
2.4
)
(2.4)
(2.4)与式
(
2.5
)
(2.5)
(2.5)相等,所以可知
a
⃗
,
b
⃗
,
c
⃗
\vec{a},\vec{b},\vec{c}
a,b,c 轮换等价。那么可令
b
⃗
=
a
⃗
,
c
⃗
=
a
⃗
\vec{b}=\vec{a},\vec{c}=\vec{a}
b=a,c=a ,代入
(
2.4
)
(2.4)
(2.4)得
3
a
⃗
×
(
a
⃗
×
a
⃗
)
=
0
⋯
自
反
性
(2.6)
3\vec{a}\times(\vec{a}\times\vec{a})=0\qquad\cdots自反性\tag{2.6}
3a×(a×a)=0⋯自反性(2.6)
满足雅可比等价
注:这样子验证可能不严谨,高中遗留下来的做题技巧
3、验证
s
o
(
3
)
so(3)
so(3)和
s
e
(
3
)
se(3)
se(3)满足李代数要求的性质。
验证
s
o
(
3
)
so(3)
so(3)
Φ
=
ϕ
⃗
∧
=
[
0
−
ϕ
⃗
3
ϕ
⃗
2
ϕ
⃗
3
0
−
ϕ
⃗
1
−
ϕ
⃗
2
ϕ
⃗
1
0
]
\Phi={\vec\phi}^\wedge=\left[ \begin{matrix} 0&-\vec\phi_3&\vec\phi_2\\ \vec\phi_3&0&-\vec\phi_1\\ -\vec\phi_2&\vec\phi_1&0 \end{matrix}\right]
Φ=ϕ∧=⎣⎢⎡0ϕ3−ϕ2−ϕ30ϕ1ϕ2−ϕ10⎦⎥⎤
s
o
(
3
)
=
{
ϕ
∈
R
3
,
Φ
=
ϕ
∧
∈
R
3
×
3
}
so(3)=\left\{\phi\in\mathbb{R}^3,\Phi=\phi^\wedge\in\mathbb{R}^{3\times3}\right\}
so(3)={ϕ∈R3,Φ=ϕ∧∈R3×3}
[
ϕ
⃗
1
,
ϕ
⃗
2
]
=
(
Φ
1
Φ
2
−
Φ
2
Φ
1
)
∨
(3.1)
[\vec\phi_1,\vec\phi_2]=(\Phi_1\Phi_2-\Phi_2\Phi_1)^\vee\tag{3.1}
[ϕ1,ϕ2]=(Φ1Φ2−Φ2Φ1)∨(3.1)
封闭性
设
ϕ
⃗
=
[
x
,
y
,
z
]
T
∈
R
3
\vec{\phi}=[x,y,z]^T\in\mathbb{R}^3
ϕ=[x,y,z]T∈R3,
[
ϕ
⃗
1
,
ϕ
⃗
2
]
=
(
Φ
1
Φ
2
−
Φ
2
Φ
1
)
∨
[\vec\phi_1,\vec\phi_2]=(\Phi_1\Phi_2-\Phi_2\Phi_1)^\vee
[ϕ1,ϕ2]=(Φ1Φ2−Φ2Φ1)∨
=
(
[
0
−
z
1
y
1
z
1
0
−
x
1
−
y
1
x
1
0
]
[
0
−
z
2
y
2
z
2
0
−
x
2
−
y
2
x
2
0
]
−
[
0
−
z
2
y
2
z
2
0
−
x
2
−
y
2
x
2
0
]
[
0
−
z
1
y
1
z
1
0
−
x
1
−
y
1
x
1
0
]
)
∨
=\left(\left[\begin{matrix}0&-z_1&y_1\\ z_1&0&-x_1\\ -y_1&x_1&0\end{matrix}\right] \left[\begin{matrix} 0&-z_2&y_2\\ z_2&0&-x_2\\ -y_2&x_2&0\end{matrix}\right] – \left[\begin{matrix} 0&-z_2&y_2\\ z_2&0&-x_2\\ -y_2&x_2&0 \end{matrix}\right] \left[\begin{matrix} 0&-z_1&y_1\\ z_1&0&-x_1\\ -y_1&x_1&0 \end{matrix}\right] \right)^\vee
=⎝⎛⎣⎡0z1−y1−z10x1y1−x10⎦⎤⎣⎡0z2−y2−z20x2y2−x20⎦⎤−⎣⎡0z2−y2−z20x2y2−x20⎦⎤⎣⎡0z1−y1−z10x1y1−x10⎦⎤⎠⎞∨
=
(
[
−
z
1
z
2
−
y
1
y
2
x
2
y
1
x
2
z
1
x
1
y
2
−
z
1
z
2
−
x
1
x
2
y
2
z
1
x
1
z
2
y
1
z
2
−
y
1
y
2
−
x
1
x
2
]
−
[
−
z
1
z
2
−
y
1
y
2
x
1
y
2
x
1
z
2
x
2
y
1
−
z
1
z
2
−
x
1
x
2
y
1
z
2
x
2
z
1
y
2
z
1
−
y
1
y
2
−
x
1
x
2
]
)
∨
=\left(\left[\begin{matrix} -z_1z_2-y_1y_2&x_2y_1&x_2z_1\\ x_1y_2&-z_1z_2-x_1x_2&y_2z_1\\ x_1z_2&y_1z_2&-y_1y_2-x_1x_2 \end{matrix}\right]- \left[\begin{matrix} -z_1z_2-y_1y_2&x_1y_2&x_1z_2\\ x_2y_1&-z_1z_2-x_1x_2&y_1z_2\\ x_2z_1&y_2z_1&-y_1y_2-x_1x_2 \end{matrix}\right]\right)^{\vee}
=⎝⎛⎣⎡−z1z2−y1y2x1y2x1z2x2y1−z1z2−x1x2y1z2x2z1y2z1−y1y2−x1x2⎦⎤−⎣⎡−z1z2−y1y2x2y1x2z1x1y2−z1z2−x1x2y2z1x1z2y1z2−y1y2−x1x2⎦⎤⎠⎞∨
=
(
[
0
x
2
y
1
−
x
1
y
2
x
2
z
1
−
x
1
z
2
x
1
y
2
−
x
2
y
1
0
y
2
z
1
−
y
1
z
2
x
1
z
2
−
x
2
z
1
y
1
z
2
−
y
2
z
1
0
]
)
∨
=
(
ϕ
⃗
3
∧
)
∨
(3.2)
=\left(\left[\begin{matrix} 0&x_2y_1-x_1y_2&x_2z_1-x_1z_2\\ x_1y_2-x_2y_1&0&y_2z_1-y_1z_2\\ x_1z_2-x_2z_1&y_1z_2-y_2z_1&0 \end{matrix}\right] \right)^{\vee}=\left({\vec\phi_3}^\wedge\right)^\vee \tag{3.2}
=⎝⎛⎣⎡0x1y2−x2y1x1z2−x2z1x2y1−x1y20y1z2−y2z1x2z1−x1z2y2z1−y1z20⎦⎤⎠⎞∨=(ϕ3∧)∨(3.2)
由
(
3.2
)
(3.2)
(3.2)易得
ϕ
⃗
3
∧
{\vec\phi_3}^\wedge
ϕ3∧ 是一个反对称矩阵,所以可以经由运算
[
∨
]
[\vee]
[∨]从反对称矩阵到向量的变换。所以
(
ϕ
⃗
3
∧
)
∨
=
ϕ
⃗
3
∈
R
3
\left({\vec\phi_3}^\wedge\right)^\vee=\vec\phi_3\in\mathbb{R}^3
(ϕ3∧)∨=ϕ3∈R3
满足封闭性
双线性
设
ϕ
⃗
1
,
ϕ
⃗
2
,
ϕ
⃗
3
∈
R
3
,
a
,
b
∈
R
\vec\phi_1,\vec\phi_2,\vec\phi_3\in\mathbb{R}^3,\;a,b\in\mathbb{R}
ϕ1,ϕ2,ϕ3∈R3,a,b∈R ,
[
a
ϕ
⃗
1
+
b
ϕ
⃗
2
,
ϕ
⃗
3
]
=
(
(
a
ϕ
⃗
1
+
b
ϕ
⃗
2
)
∧
ϕ
⃗
3
∧
−
ϕ
⃗
3
∧
(
a
ϕ
⃗
1
+
b
ϕ
⃗
2
)
∧
)
∨
=
(
a
ϕ
⃗
1
∧
ϕ
⃗
3
∧
+
b
ϕ
⃗
2
∧
ϕ
⃗
3
∧
−
(
a
ϕ
⃗
3
∧
ϕ
⃗
1
∧
+
b
ϕ
⃗
3
∧
ϕ
⃗
2
∧
)
)
∨
=
(
a
(
ϕ
⃗
1
∧
ϕ
⃗
3
∧
−
ϕ
⃗
3
∧
ϕ
⃗
1
∧
)
+
b
(
ϕ
⃗
2
∧
ϕ
⃗
3
∧
−
ϕ
⃗
3
∧
ϕ
⃗
2
∧
)
)
∨
(3.3)
\begin{aligned} &\qquad[a\vec\phi_1+b\vec\phi_2,\vec\phi_3]\\ &=\left((a\vec\phi_1+b\vec\phi_2)^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge(a\vec\phi_1+b\vec\phi_2)^\wedge\right)^\vee\\ &=\left(a{\vec\phi_1}^\wedge{\vec\phi_3}^\wedge+b{\vec\phi_2}^\wedge{\vec\phi_3}^\wedge-(a{\vec\phi_3}^\wedge{\vec\phi_1}^\wedge+b{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge)\right)^\vee\\ &=\left(a({\vec\phi_1}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_1}^\wedge)+b({\vec\phi_2}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge)\right)^\vee \end{aligned}\tag{3.3}
[aϕ1+bϕ2,ϕ3]=((aϕ1+bϕ2)∧ϕ3∧−ϕ3∧(aϕ1+bϕ2)∧)∨=(aϕ1∧ϕ3∧+bϕ2∧ϕ3∧−(aϕ3∧ϕ1∧+bϕ3∧ϕ2∧))∨=(a(ϕ1∧ϕ3∧−ϕ3∧ϕ1∧)+b(ϕ2∧ϕ3∧−ϕ3∧ϕ2∧))∨(3.3)
由封闭性
可知,
(
ϕ
⃗
1
∧
ϕ
⃗
3
∧
−
ϕ
⃗
3
∧
ϕ
⃗
1
∧
)
({\vec\phi_1}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_1}^\wedge)
(ϕ1∧ϕ3∧−ϕ3∧ϕ1∧) 是反对称矩阵,所以可以得到
=
a
(
ϕ
⃗
1
∧
ϕ
⃗
3
∧
−
ϕ
⃗
3
∧
ϕ
⃗
1
∧
)
∨
+
b
(
ϕ
⃗
2
∧
ϕ
⃗
3
∧
−
ϕ
⃗
3
∧
ϕ
⃗
2
∧
)
∨
=
a
[
ϕ
⃗
1
,
ϕ
⃗
3
]
+
b
[
ϕ
⃗
2
,
ϕ
⃗
3
]
(3.4)
\begin{aligned} &=a({\vec\phi_1}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_1}^\wedge)^\vee+b({\vec\phi_2}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge)^\vee\\ &=a[\vec\phi_1,\vec\phi_3]+b[\vec\phi_2,\vec\phi_3] \end{aligned}\tag{3.4}
=a(ϕ1∧ϕ3∧−ϕ3∧ϕ1∧)∨+b(ϕ2∧ϕ3∧−ϕ3∧ϕ2∧)∨=a[ϕ1,ϕ3]+b[ϕ2,ϕ3](3.4)
同理可得
[
ϕ
⃗
3
,
a
ϕ
⃗
1
+
b
ϕ
⃗
2
]
=
a
[
ϕ
⃗
3
,
ϕ
⃗
1
]
+
b
[
ϕ
⃗
3
,
ϕ
⃗
2
]
(3.5)
[\vec\phi_3,a\vec\phi_1+b\vec\phi_2]=a[\vec\phi_3,\vec\phi_1]+b[\vec\phi_3,\vec\phi_2]\tag{3.5}
[ϕ3,aϕ1+bϕ2]=a[ϕ3,ϕ1]+b[ϕ3,ϕ2](3.5)
满足双线性
自反性
设
ϕ
⃗
∈
R
3
\vec\phi\in\mathbb{R}^3
ϕ∈R3 ,
[
ϕ
⃗
,
ϕ
⃗
]
=
(
ϕ
⃗
∧
ϕ
⃗
∧
−
ϕ
⃗
∧
ϕ
⃗
∧
)
∨
=
0
T
⋯
很
显
然
(3.6)
[\vec\phi,\vec\phi]=\left({\vec\phi}^\wedge{\vec\phi}^\wedge-{\vec\phi}^\wedge{\vec\phi}^\wedge\right)^\vee=0^T\qquad\cdots很显然\tag{3.6}
[ϕ,ϕ]=(ϕ∧ϕ∧−ϕ∧ϕ∧)∨=0T⋯很显然(3.6)
满足自反性
雅可比等价
设
ϕ
⃗
1
,
ϕ
⃗
2
,
ϕ
⃗
3
∈
R
3
\vec\phi_1,\vec\phi_2,\vec\phi_3\in\mathbb{R}^3
ϕ1,ϕ2,ϕ3∈R3 ,
[
ϕ
⃗
1
,
[
ϕ
⃗
2
,
ϕ
⃗
3
]
]
+
[
ϕ
⃗
3
,
[
ϕ
⃗
1
,
ϕ
⃗
2
]
]
+
[
ϕ
⃗
2
,
[
ϕ
⃗
3
,
ϕ
⃗
1
]
]
=
ϕ
⃗
1
∧
(
ϕ
⃗
2
∧
ϕ
⃗
3
∧
−
ϕ
⃗
3
∧
ϕ
⃗
2
∧
)
−
(
ϕ
⃗
2
∧
ϕ
⃗
3
∧
−
ϕ
⃗
3
∧
ϕ
⃗
2
∧
)
ϕ
⃗
1
∧
+
ϕ
⃗
3
∧
(
ϕ
⃗
1
∧
ϕ
⃗
2
∧
−
ϕ
⃗
2
∧
ϕ
⃗
1
∧
)
−
(
ϕ
⃗
1
∧
ϕ
⃗
2
∧
−
ϕ
⃗
2
∧
ϕ
⃗
1
∧
)
ϕ
⃗
3
∧
+
ϕ
⃗
2
∧
(
ϕ
⃗
3
∧
ϕ
⃗
1
∧
−
ϕ
⃗
1
∧
ϕ
⃗
3
∧
)
−
(
ϕ
⃗
3
∧
ϕ
⃗
1
∧
−
ϕ
⃗
1
∧
ϕ
⃗
3
∧
)
ϕ
⃗
2
∧
=
ϕ
⃗
1
∧
ϕ
⃗
2
∧
ϕ
⃗
3
∧
−
ϕ
⃗
1
∧
ϕ
⃗
3
∧
ϕ
⃗
2
∧
−
ϕ
⃗
2
∧
ϕ
⃗
3
∧
ϕ
⃗
1
∧
+
ϕ
⃗
3
∧
ϕ
⃗
2
∧
ϕ
⃗
1
∧
+
ϕ
⃗
3
∧
ϕ
⃗
1
∧
ϕ
⃗
2
∧
−
ϕ
⃗
3
∧
ϕ
⃗
2
∧
ϕ
⃗
1
∧
−
ϕ
⃗
1
∧
ϕ
⃗
2
∧
ϕ
⃗
3
∧
+
ϕ
⃗
2
∧
ϕ
⃗
1
∧
ϕ
⃗
3
∧
+
ϕ
⃗
2
∧
ϕ
⃗
3
∧
ϕ
⃗
1
∧
−
ϕ
⃗
2
∧
ϕ
⃗
1
∧
ϕ
⃗
3
∧
−
ϕ
⃗
3
∧
ϕ
⃗
1
∧
ϕ
⃗
2
∧
+
ϕ
⃗
1
∧
ϕ
⃗
3
∧
ϕ
⃗
2
∧
=
0
\begin{aligned} &\qquad[\vec\phi_1,[\vec\phi_2,\vec\phi_3]]+[\vec\phi_3,[\vec\phi_1,\vec\phi_2]]+[\vec\phi_2,[\vec\phi_3,\vec\phi_1]]\\ &=\quad{\vec\phi_1}^\wedge({\vec\phi_2}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge)-({\vec\phi_2}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge){\vec\phi_1}^\wedge\\ &\quad+{\vec\phi_3}^\wedge({\vec\phi_1}^\wedge{\vec\phi_2}^\wedge-{\vec\phi_2}^\wedge{\vec\phi_1}^\wedge)-({\vec\phi_1}^\wedge{\vec\phi_2}^\wedge-{\vec\phi_2}^\wedge{\vec\phi_1}^\wedge){\vec\phi_3}^\wedge\\ &\quad+{\vec\phi_2}^\wedge({\vec\phi_3}^\wedge{\vec\phi_1}^\wedge-{\vec\phi_1}^\wedge{\vec\phi_3}^\wedge)-({\vec\phi_3}^\wedge{\vec\phi_1}^\wedge-{\vec\phi_1}^\wedge{\vec\phi_3}^\wedge){\vec\phi_2}^\wedge\\ &=\quad{\vec\phi_1}^\wedge{\vec\phi_2}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_1}^\wedge{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge-{\vec\phi_2}^\wedge{\vec\phi_3}^\wedge{\vec\phi_1}^\wedge+{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge{\vec\phi_1}^\wedge\\ &\quad+{\vec\phi_3}^\wedge{\vec\phi_1}^\wedge{\vec\phi_2}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge{\vec\phi_1}^\wedge-{\vec\phi_1}^\wedge{\vec\phi_2}^\wedge{\vec\phi_3}^\wedge+{\vec\phi_2}^\wedge{\vec\phi_1}^\wedge{\vec\phi_3}^\wedge\\ &\quad+{\vec\phi_2}^\wedge{\vec\phi_3}^\wedge{\vec\phi_1}^\wedge-{\vec\phi_2}^\wedge{\vec\phi_1}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_1}^\wedge{\vec\phi_2}^\wedge+{\vec\phi_1}^\wedge{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge\\ &=0 \end{aligned}
[ϕ1,[ϕ2,ϕ3]]+[ϕ3,[ϕ1,ϕ2]]+[ϕ2,[ϕ3,ϕ1]]=ϕ1∧(ϕ2∧ϕ3∧−ϕ3∧ϕ2∧)−(ϕ2∧ϕ3∧−ϕ3∧ϕ2∧)ϕ1∧+ϕ3∧(ϕ1∧ϕ2∧−ϕ2∧ϕ1∧)−(ϕ1∧ϕ2∧−ϕ2∧ϕ1∧)ϕ3∧+ϕ2∧(ϕ3∧ϕ1∧−ϕ1∧ϕ3∧)−(ϕ3∧ϕ1∧−ϕ1∧ϕ3∧)ϕ2∧=ϕ1∧ϕ2∧ϕ3∧−ϕ1∧ϕ3∧ϕ2∧−ϕ2∧ϕ3∧ϕ1∧+ϕ3∧ϕ2∧ϕ1∧+ϕ3∧ϕ1∧ϕ2∧−ϕ3∧ϕ2∧ϕ1∧−ϕ1∧ϕ2∧ϕ3∧+ϕ2∧ϕ1∧ϕ3∧+ϕ2∧ϕ3∧ϕ1∧−ϕ2∧ϕ1∧ϕ3∧−ϕ3∧ϕ1∧ϕ2∧+ϕ1∧ϕ3∧ϕ2∧=0
满足雅可比等价
验证
s
e
(
3
)
se(3)
se(3)
s
e
(
3
)
=
{
ξ
=
[
ρ
ϕ
]
∈
R
6
,
ρ
∈
R
3
,
ϕ
∈
s
o
(
3
)
,
ξ
∧
=
[
ϕ
∧
ρ
0
T
0
]
∈
R
4
×
4
}
se(3)=\left\{\xi=\left[\begin{matrix}\rho\\\phi\end{matrix}\right]\in\mathbb{R}^6,\rho\in\mathbb{R}^3,\phi\in so(3),\xi^\wedge=\left[\begin{matrix}\phi^\wedge&\rho\\0^T&0\end{matrix}\right]\in\mathbb{R^{4\times4}}\right\}
se(3)={ξ=[ρϕ]∈R6,ρ∈R3,ϕ∈so(3),ξ∧=[ϕ∧0Tρ0]∈R4×4}
[
ξ
⃗
1
,
ξ
⃗
2
]
=
(
ξ
⃗
1
∧
ξ
⃗
2
∧
−
ξ
⃗
2
∧
ξ
⃗
1
∧
)
∨
[\vec\xi_1,\vec\xi_2]=\left({\vec\xi_1}^\wedge{\vec\xi_2}^\wedge-{\vec\xi_2}^\wedge{\vec\xi_1}^\wedge\right)^\vee
[ξ1,ξ2]=(ξ1∧ξ2∧−ξ2∧ξ1∧)∨
封闭性
设
ξ
⃗
1
,
ξ
⃗
2
∈
s
e
(
3
)
\vec\xi_1,\vec\xi_2\in se(3)
ξ1,ξ2∈se(3) ,
[
ξ
⃗
1
,
ξ
⃗
2
]
=
(
ξ
⃗
1
∧
ξ
⃗
2
∧
−
ξ
⃗
2
∧
ξ
⃗
1
∧
)
∨
[\vec\xi_1,\vec\xi_2]=\left({\vec\xi_1}^\wedge{\vec\xi_2}^\wedge-{\vec\xi_2}^\wedge{\vec\xi_1}^\wedge\right)^\vee
[ξ1,ξ2]=(ξ1∧ξ2∧−ξ2∧ξ1∧)∨
=
(
[
ϕ
⃗
1
∧
ρ
⃗
1
0
T
0
]
[
ϕ
⃗
2
∧
ρ
⃗
2
0
T
0
]
−
[
ϕ
⃗
2
∧
ρ
⃗
2
0
T
0
]
[
ϕ
⃗
1
∧
ρ
⃗
1
0
T
0
]
)
∨
(3.7)
=\left( \left[\begin{matrix} {\vec\phi_1}^\wedge&\vec\rho_1\\0^T&0 \end{matrix}\right] \left[\begin{matrix} {\vec\phi_2}^\wedge&\vec\rho_2\\0^T&0 \end{matrix}\right]- \left[\begin{matrix} {\vec\phi_2}^\wedge&\vec\rho_2\\0^T&0 \end{matrix}\right] \left[\begin{matrix} {\vec\phi_1}^\wedge&\vec\rho_1\\0^T&0 \end{matrix}\right] \right)^\vee\tag{3.7}
=([ϕ1∧0Tρ10][ϕ2∧0Tρ20]−[ϕ2∧0Tρ20][ϕ1∧0Tρ10])∨(3.7)
=
(
[
ϕ
⃗
1
∧
ϕ
⃗
2
∧
ϕ
⃗
1
∧
ρ
⃗
2
0
T
0
]
−
[
ϕ
⃗
2
∧
ϕ
⃗
1
∧
ϕ
⃗
2
∧
ρ
⃗
1
0
T
0
]
)
∨
(3.8)
=\left(\left[\begin{matrix} {\vec\phi_1}^\wedge{\vec\phi_2}^\wedge&{\vec\phi_1}^\wedge\vec\rho_2\\0^T&0 \end{matrix}\right]- \left[\begin{matrix} {\vec\phi_2}^\wedge{\vec\phi_1}^\wedge&{\vec\phi_2}^\wedge\vec\rho_1\\0^T&0 \end{matrix}\right] \right)^\vee\tag{3.8}
=([ϕ1∧ϕ2∧0Tϕ1∧ρ20]−[ϕ2∧ϕ1∧0Tϕ2∧ρ10])∨(3.8)
=
(
[
ϕ
⃗
1
∧
ϕ
⃗
2
∧
−
ϕ
⃗
2
∧
ϕ
⃗
1
∧
ϕ
⃗
1
∧
ρ
⃗
2
−
ϕ
⃗
2
∧
ρ
⃗
1
0
T
0
]
)
∨
(3.9)
=\left( \left[\begin{matrix} {\vec\phi_1}^\wedge{\vec\phi_2}^\wedge-{\vec\phi_2}^\wedge{\vec\phi_1}^\wedge&{\vec\phi_1}^\wedge\vec\rho_2-{\vec\phi_2}^\wedge\vec\rho_1\\0^T&0 \end{matrix}\right] \right)^\vee\tag{3.9}
=([ϕ1∧ϕ2∧−ϕ2∧ϕ1∧0Tϕ1∧ρ2−ϕ2∧ρ10])∨(3.9)
由
s
o
(
3
)
so(3)
so(3) 的封闭性
可知,
ϕ
⃗
1
∧
ϕ
⃗
2
∧
−
ϕ
⃗
2
∧
ϕ
⃗
1
∧
=
ϕ
⃗
3
∧
,
ϕ
⃗
3
∈
s
o
(
3
)
{\vec\phi_1}^\wedge{\vec\phi_2}^\wedge-{\vec\phi_2}^\wedge{\vec\phi_1}^\wedge={\vec\phi_3}^\wedge,\;\vec\phi_3\in so(3)
ϕ1∧ϕ2∧−ϕ2∧ϕ1∧=ϕ3∧,ϕ3∈so(3) ;由矩阵的运算可知
ϕ
⃗
1
∧
ρ
⃗
2
−
ϕ
⃗
2
∧
ρ
⃗
1
∈
R
3
{\vec\phi_1}^\wedge\vec\rho_2-{\vec\phi_2}^\wedge\vec\rho_1\in\mathbb{R}^3
ϕ1∧ρ2−ϕ2∧ρ1∈R3 ,所以可令
式
(
3.9
)
=
(
ξ
⃗
3
∧
)
∨
=
ξ
⃗
3
∈
s
e
(
3
)
(3.10)
式(3.9)=\left({\vec\xi_3}^\wedge\right)^\vee=\vec\xi_3\in se(3)\tag{3.10}
式(3.9)=(ξ3∧)∨=ξ3∈se(3)(3.10)
满足封闭性
双线性
设
ξ
⃗
1
,
ξ
⃗
2
,
ξ
⃗
3
∈
s
e
(
3
)
\vec\xi_1,\vec\xi_2,\vec\xi_3\in se(3)
ξ1,ξ2,ξ3∈se(3) ,
[
a
ξ
⃗
1
+
b
ξ
⃗
2
,
ξ
⃗
3
]
=
(
(
a
ξ
⃗
1
+
b
ξ
⃗
2
)
∧
ξ
⃗
3
∧
−
ξ
⃗
3
∧
(
a
ξ
⃗
1
+
b
ξ
⃗
2
)
∧
)
∨
=
(
(
a
ξ
⃗
1
∧
+
b
ξ
⃗
2
∧
)
ξ
⃗
3
∧
−
ξ
⃗
3
∧
(
a
ξ
⃗
1
∧
+
b
ξ
⃗
2
∧
)
)
∨
=
(
a
ξ
⃗
1
∧
ξ
⃗
3
∧
+
b
ξ
⃗
2
∧
ξ
⃗
3
∧
−
(
a
ξ
⃗
3
∧
ξ
⃗
1
∧
+
b
ξ
⃗
3
∧
ξ
⃗
2
∧
)
)
∨
=
(
a
(
ξ
⃗
1
∧
ξ
⃗
3
∧
−
ξ
⃗
3
∧
ξ
⃗
1
∧
)
+
b
(
ξ
⃗
2
∧
ξ
⃗
3
∧
−
ξ
⃗
3
∧
ξ
⃗
2
∧
)
)
∨
=
a
(
ξ
⃗
1
∧
ξ
⃗
3
∧
−
ξ
⃗
3
∧
ξ
⃗
1
∧
)
∨
+
b
(
ξ
⃗
2
∧
ξ
⃗
3
∧
−
ξ
⃗
3
∧
ξ
⃗
2
∧
)
∨
=
a
[
ξ
⃗
1
,
ξ
⃗
3
]
+
b
[
ξ
⃗
2
,
ξ
⃗
3
]
(3.11)
\begin{aligned} &\qquad[a\vec\xi_1+b\vec\xi_2,\vec\xi_3]\\ &=\left((a\vec\xi_1+b\vec\xi_2)^\wedge{\vec\xi_3}^\wedge-{\vec\xi_3}^\wedge(a\vec\xi_1+b\vec\xi_2)^\wedge\right)^\vee\\ &=\left((a{\vec\xi_1}^\wedge+{b\vec\xi_2}^\wedge){\vec\xi_3}^\wedge-{\vec\xi_3}^\wedge(a{\vec\xi_1}^\wedge+{b\vec\xi_2}^\wedge)\right)^\vee\\ &=\left(a{\vec\xi_1}^\wedge{\vec\xi_3}^\wedge+b{\vec\xi_2}^\wedge{\vec\xi_3}^\wedge-(a{\vec\xi_3}^\wedge{\vec\xi_1}^\wedge+b{\vec\xi_3}^\wedge{\vec\xi_2}^\wedge)\right)^\vee\\ &=\left(a({\vec\xi_1}^\wedge{\vec\xi_3}^\wedge-{\vec\xi_3}^\wedge{\vec\xi_1}^\wedge)+b({\vec\xi_2}^\wedge{\vec\xi_3}^\wedge-{\vec\xi_3}^\wedge{\vec\xi_2}^\wedge)\right)^\vee\\ &=a({\vec\xi_1}^\wedge{\vec\xi_3}^\wedge-{\vec\xi_3}^\wedge{\vec\xi_1}^\wedge)^\vee+b({\vec\xi_2}^\wedge{\vec\xi_3}^\wedge-{\vec\xi_3}^\wedge{\vec\xi_2}^\wedge)^\vee\\ &=a[\vec\xi_1,\vec\xi_3]+b[\vec\xi_2,\vec\xi_3] \end{aligned}\tag{3.11}
[aξ1+bξ2,ξ3]=((aξ1+bξ2)∧ξ3∧−ξ3∧(aξ1+bξ2)∧)∨=((aξ1∧+bξ2∧)ξ3∧−ξ3∧(aξ1∧+bξ2∧))∨=(aξ1∧ξ3∧+bξ2∧ξ3∧−(aξ3∧ξ1∧+bξ3∧ξ2∧))∨=(a(ξ1∧ξ3∧−ξ3∧ξ1∧)+b(ξ2∧ξ3∧−ξ3∧ξ2∧))∨=a(ξ1∧ξ3∧−ξ3∧ξ1∧)∨+b(ξ2∧ξ3∧−ξ3∧ξ2∧)∨=a[ξ1,ξ3]+b[ξ2,ξ3](3.11)
同理可得
[
ξ
⃗
3
,
a
ξ
⃗
1
+
b
ξ
⃗
2
]
=
a
[
ξ
⃗
3
,
ξ
⃗
1
]
+
b
[
ξ
⃗
3
,
ξ
⃗
2
]
(3.12)
[\vec\xi_3,a\vec\xi_1+b\vec\xi_2]=a[\vec\xi_3,\vec\xi_1]+b[\vec\xi_3,\vec\xi_2]\tag{3.12}
[ξ3,aξ1+bξ2]=a[ξ3,ξ1]+b[ξ3,ξ2](3.12)
满足双线性
自反性
设
ξ
⃗
∈
R
6
\vec\xi\in\mathbb{R}^6
ξ∈R6 ,
[
ξ
⃗
,
ξ
⃗
]
=
(
ξ
⃗
∧
ξ
⃗
∧
−
ξ
⃗
∧
ξ
⃗
∧
)
∨
=
0
T
⋯
很
显
然
[\vec\xi,\vec\xi]=\left({\vec\xi}^\wedge{\vec\xi}^\wedge-{\vec\xi}^\wedge{\vec\xi}^\wedge\right)^\vee=0^T\qquad\cdots很显然
[ξ,ξ]=(ξ∧ξ∧−ξ∧ξ∧)∨=0T⋯很显然
满足自反性
雅可比等价
设
ξ
⃗
1
,
ξ
⃗
2
,
ξ
⃗
3
∈
R
6
\vec\xi_1,\vec\xi_2,\vec\xi_3\in\mathbb{R}^6
ξ1,ξ2,ξ3∈R6 ,
[
ξ
⃗
1
,
[
ξ
⃗
2
,
ξ
⃗
3
]
]
+
[
ξ
⃗
3
,
[
ξ
⃗
1
,
ξ
⃗
2
]
]
+
[
ξ
⃗
2
,
[
ξ
⃗
3
,
ξ
⃗
1
]
]
=
ξ
⃗
1
∧
(
ξ
⃗
2
∧
ξ
⃗
3
∧
−
ξ
⃗
3
∧
ξ
⃗
2
∧
)
−
(
ξ
⃗
2
∧
ξ
⃗
3
∧
−
ξ
⃗
3
∧
ξ
⃗
2
∧
)
ξ
⃗
1
∧
+
ξ
⃗
3
∧
(
ξ
⃗
1
∧
ξ
⃗
2
∧
−
ξ
⃗
2
∧
ξ
⃗
1
∧
)
−
(
ξ
⃗
1
∧
ξ
⃗
2
∧
−
ξ
⃗
2
∧
ξ
⃗
1
∧
)
ξ
⃗
3
∧
+
ξ
⃗
2
∧
(
ξ
⃗
3
∧
ξ
⃗
1
∧
−
ξ
⃗
1
∧
ξ
⃗
3
∧
)
−
(
ξ
⃗
3
∧
ξ
⃗
1
∧
−
ξ
⃗
1
∧
ξ
⃗
3
∧
)
ξ
⃗
2
∧
=
ξ
⃗
1
∧
ξ
⃗
2
∧
ξ
⃗
3
∧
−
ξ
⃗
1
∧
ξ
⃗
3
∧
ξ
⃗
2
∧
−
ξ
⃗
2
∧
ξ
⃗
3
∧
ξ
⃗
1
∧
+
ξ
⃗
3
∧
ξ
⃗
2
∧
ξ
⃗
1
∧
+
ξ
⃗
3
∧
ξ
⃗
1
∧
ξ
⃗
2
∧
−
ξ
⃗
3
∧
ξ
⃗
2
∧
ξ
⃗
1
∧
−
ξ
⃗
1
∧
ξ
⃗
2
∧
ξ
⃗
3
∧
+
ξ
⃗
2
∧
ξ
⃗
1
∧
ξ
⃗
3
∧
+
ξ
⃗
2
∧
ξ
⃗
3
∧
ξ
⃗
1
∧
−
ξ
⃗
2
∧
ξ
⃗
1
∧
ξ
⃗
3
∧
−
ξ
⃗
3
∧
ξ
⃗
1
∧
ξ
⃗
2
∧
+
ξ
⃗
1
∧
ξ
⃗
3
∧
ξ
⃗
2
∧
=
0
\begin{aligned} &\qquad[\vec\xi_1,[\vec\xi_2,\vec\xi_3]]+[\vec\xi_3,[\vec\xi_1,\vec\xi_2]]+[\vec\xi_2,[\vec\xi_3,\vec\xi_1]]\\ &=\quad{\vec\xi_1}^\wedge({\vec\xi_2}^\wedge{\vec\xi_3}^\wedge-{\vec\xi_3}^\wedge{\vec\xi_2}^\wedge)-({\vec\xi_2}^\wedge{\vec\xi_3}^\wedge-{\vec\xi_3}^\wedge{\vec\xi_2}^\wedge){\vec\xi_1}^\wedge\\ &\quad+{\vec\xi_3}^\wedge({\vec\xi_1}^\wedge{\vec\xi_2}^\wedge-{\vec\xi_2}^\wedge{\vec\xi_1}^\wedge)-({\vec\xi_1}^\wedge{\vec\xi_2}^\wedge-{\vec\xi_2}^\wedge{\vec\xi_1}^\wedge){\vec\xi_3}^\wedge\\ &\quad+{\vec\xi_2}^\wedge({\vec\xi_3}^\wedge{\vec\xi_1}^\wedge-{\vec\xi_1}^\wedge{\vec\xi_3}^\wedge)-({\vec\xi_3}^\wedge{\vec\xi_1}^\wedge-{\vec\xi_1}^\wedge{\vec\xi_3}^\wedge){\vec\xi_2}^\wedge\\ &=\quad{\vec\xi_1}^\wedge{\vec\xi_2}^\wedge{\vec\xi_3}^\wedge-{\vec\xi_1}^\wedge{\vec\xi_3}^\wedge{\vec\xi_2}^\wedge-{\vec\xi_2}^\wedge{\vec\xi_3}^\wedge{\vec\xi_1}^\wedge+{\vec\xi_3}^\wedge{\vec\xi_2}^\wedge{\vec\xi_1}^\wedge\\ &\quad+{\vec\xi_3}^\wedge{\vec\xi_1}^\wedge{\vec\xi_2}^\wedge-{\vec\xi_3}^\wedge{\vec\xi_2}^\wedge{\vec\xi_1}^\wedge-{\vec\xi_1}^\wedge{\vec\xi_2}^\wedge{\vec\xi_3}^\wedge+{\vec\xi_2}^\wedge{\vec\xi_1}^\wedge{\vec\xi_3}^\wedge\\ &\quad+{\vec\xi_2}^\wedge{\vec\xi_3}^\wedge{\vec\xi_1}^\wedge-{\vec\xi_2}^\wedge{\vec\xi_1}^\wedge{\vec\xi_3}^\wedge-{\vec\xi_3}^\wedge{\vec\xi_1}^\wedge{\vec\xi_2}^\wedge+{\vec\xi_1}^\wedge{\vec\xi_3}^\wedge{\vec\xi_2}^\wedge\\ &=0 \end{aligned}
[ξ1,[ξ2,ξ3]]+[ξ3,[ξ1,ξ2]]+[ξ2,[ξ3,ξ1]]=ξ1∧(ξ2∧ξ3∧−ξ3∧ξ2∧)−(ξ2∧ξ3∧−ξ3∧ξ2∧)ξ1∧+ξ3∧(ξ1∧ξ2∧−ξ2∧ξ1∧)−(ξ1∧ξ2∧−ξ2∧ξ1∧)ξ3∧+ξ2∧(ξ3∧ξ1∧−ξ1∧ξ3∧)−(ξ3∧ξ1∧−ξ1∧ξ3∧)ξ2∧=ξ1∧ξ2∧ξ3∧−ξ1∧ξ3∧ξ2∧−ξ2∧ξ3∧ξ1∧+ξ3∧ξ2∧ξ1∧+ξ3∧ξ1∧ξ2∧−ξ3∧ξ2∧ξ1∧−ξ1∧ξ2∧ξ3∧+ξ2∧ξ1∧ξ3∧+ξ2∧ξ3∧ξ1∧−ξ2∧ξ1∧ξ3∧−ξ3∧ξ1∧ξ2∧+ξ1∧ξ3∧ξ2∧=0
满足雅可比等价
4、证明性质
(
4.20
)
(4.20)
(4.20)和
(
4.21
)
(4.21)
(4.21)。
证明性质
a
∧
a
∧
=
a
a
T
−
I
a^\wedge a^\wedge=aa^T-I
a∧a∧=aaT−I
设
a
⃗
=
[
a
1
,
a
2
,
a
3
]
T
\vec{a}=[a_1,a_2,a_3]^T
a=[a1,a2,a3]T.
已知
a
∧
=
[
0
−
a
3
a
2
a
3
0
−
a
1
−
a
2
a
1
0
]
,
a
1
2
+
a
2
2
+
a
3
2
=
1.
a^\wedge=\left[\begin{matrix}0&-a_3&a_2\\a_3&0&-a_1\\-a_2&a_1&0\end{matrix}\right],{a_1}^2+{a_2}^2+{a_3}^2=1.
a∧=⎣⎡0a3−a2−a30a1a2−a10⎦⎤,a12+a22+a32=1.
a
∧
a
∧
=
[
0
−
a
3
a
2
a
3
0
−
a
1
−
a
2
a
1
0
]
[
0
−
a
3
a
2
a
3
0
−
a
1
−
a
2
a
1
0
]
(4.1)
a^\wedge a^\wedge=\left[\begin{matrix}0&-a_3&a_2\\a_3&0&-a_1\\-a_2&a_1&0\end{matrix}\right]\left[\begin{matrix}0&-a_3&a_2\\a_3&0&-a_1\\-a_2&a_1&0\end{matrix}\right]\tag{4.1}
a∧a∧=⎣⎡0a3−a2−a30a1a2−a10⎦⎤⎣⎡0a3−a2−a30a1a2−a10⎦⎤(4.1)
=
[
−
a
2
2
−
a
3
2
a
1
a
2
a
1
a
3
a
1
a
2
−
a
1
2
−
a
3
2
a
2
a
3
a
1
a
3
a
2
a
3
−
a
1
2
−
a
2
2
]
+
I
−
I
(4.2)
=\left[\begin{matrix} -{a_2}^2-{a_3}^2&a_1a_2&a_1a_3\\ a_1a_2&-{a_1}^2-{a_3}^2&a_2a_3\\ a_1a_3&a_2a_3&-{a_1}^2-{a_2}^2 \end{matrix}\right]+I-I\tag{4.2}
=⎣⎡−a22−a32a1a2a1a3a1a2−a12−a32a2a3a1a3a2a3−a12−a22⎦⎤+I−I(4.2)
=
[
1
−
a
2
2
−
a
3
2
a
1
a
2
a
1
a
3
a
1
a
2
1
−
a
1
2
−
a
3
2
a
2
a
3
a
1
a
3
a
2
a
3
1
−
a
1
2
−
a
2
2
]
−
I
(4.3)
=\left[\begin{matrix} 1-{a_2}^2-{a_3}^2&a_1a_2&a_1a_3\\ a_1a_2&1-{a_1}^2-{a_3}^2&a_2a_3\\ a_1a_3&a_2a_3&1-{a_1}^2-{a_2}^2 \end{matrix}\right]-I\tag{4.3}
=⎣⎡1−a22−a32a1a2a1a3a1a21−a12−a32a2a3a1a3a2a31−a12−a22⎦⎤−I(4.3)
=
[
a
1
2
a
1
a
2
a
1
a
3
a
1
a
2
a
2
2
a
2
a
3
a
1
a
3
a
2
a
3
a
3
2
]
−
I
=
a
a
T
−
I
,
得
证
(4.3)
=\left[\begin{matrix} {a_1}^2&a_1a_2&a_1a_3\\ a_1a_2&{a_2}^2&a_2a_3\\ a_1a_3&a_2a_3&{a_3}^2 \end{matrix}\right]-I=aa^T-I , 得证\tag{4.3}
=⎣⎡a12a1a2a1a3a1a2a22a2a3a1a3a2a3a32⎦⎤−I=aaT−I,得证(4.3)
证明性质
a
∧
a
∧
a
∧
=
−
a
∧
a^\wedge a^\wedge a^\wedge=-a^\wedge
a∧a∧a∧=−a∧
设
a
⃗
=
[
a
1
,
a
2
,
a
3
]
T
\vec{a}=[a_1,a_2,a_3]^T
a=[a1,a2,a3]T.
由
(
4.2
)
(4.2)
(4.2)可得:
a
∧
a
∧
a
∧
=
a
∧
(
a
∧
a
∧
)
(4.4)
a^\wedge a^\wedge a^\wedge=a^\wedge (a^\wedge a^\wedge)\tag{4.4}
a∧a∧a∧=a∧(a∧a∧)(4.4)
=
[
0
−
a
3
a
2
a
3
0
−
a
1
−
a
2
a
1
0
]
[
−
a
2
2
−
a
3
2
a
1
a
2
a
1
a
3
a
1
a
2
−
a
1
2
−
a
3
2
a
2
a
3
a
1
a
3
a
2
a
3
−
a
1
2
−
a
2
2
]
(4.5)
=\left[\begin{matrix} 0&-a_3&a_2\\ a_3&0&-a_1\\ -a_2&a_1&0 \end{matrix}\right] \left[\begin{matrix} -{a_2}^2-{a_3}^2&a_1a_2&a_1a_3\\ a_1a_2&-{a_1}^2-{a_3}^2&a_2a_3\\ a_1a_3&a_2a_3&-{a_1}^2-{a_2}^2 \end{matrix}\right]\tag{4.5}
=⎣⎡0a3−a2−a30a1a2−a10⎦⎤⎣⎡−a22−a32a1a2a1a3a1a2−a12−a32a2a3a1a3a2a3−a12−a22⎦⎤(4.5)
=
[
−
a
1
a
2
a
3
+
a
1
a
2
a
3
a
1
2
a
3
+
a
3
3
+
a
2
2
a
3
−
a
2
a
3
2
−
a
1
2
a
2
−
a
2
3
−
a
2
2
a
3
−
a
3
3
−
a
1
2
a
3
a
1
a
2
a
3
−
a
1
a
2
a
3
a
1
a
3
2
+
a
1
3
+
a
1
a
2
2
a
2
3
+
a
2
a
3
2
+
a
1
2
a
2
−
a
1
a
2
2
−
a
1
3
−
a
1
a
3
2
−
a
1
a
2
a
3
+
a
1
a
2
a
3
]
(4.6)
=\left[\begin{matrix} -a_1a_2a_3+a_1a_2a_3&a_1^2a_3+a_3^3+a_2^2a_3&-a_2a_3^2-a_1^2a_2-a_2^3\\ -a_2^2a_3-a_3^3-a_1^2a_3&a_1a_2a_3-a_1a_2a_3&a_1a_3^2+a_1^3+a_1a_2^2\\ a_2^3+a_2a_3^2+a_1^2a_2&-a_1a_2^2-a_1^3-a_1a_3^2&-a_1a_2a_3+a_1a_2a_3 \end{matrix}\right]\tag{4.6}
=⎣⎡−a1a2a3+a1a2a3−a22a3−a33−a12a3a23+a2a32+a12a2a12a3+a33+a22a3a1a2a3−a1a2a3−a1a22−a13−a1a32−a2a32−a12a2−a23a1a32+a13+a1a22−a1a2a3+a1a2a3⎦⎤(4.6)
=
[
0
a
3
(
a
1
2
+
a
2
2
+
a
3
2
)
−
a
2
(
a
1
2
+
a
2
2
+
a
3
2
)
−
a
3
(
a
1
2
+
a
2
2
+
a
3
2
)
0
a
1
(
a
1
2
+
a
2
2
+
a
3
2
)
a
2
(
a
1
2
+
a
2
2
+
a
3
2
)
−
a
1
(
a
1
2
+
a
2
2
+
a
3
2
)
0
]
(4.7)
=\left[\begin{matrix} 0&a_3(a_1^2+a_2^2+a_3^2)&-a_2(a_1^2+a_2^2+a_3^2)\\ -a_3(a_1^2+a_2^2+a_3^2)&0&a_1(a_1^2+a_2^2+a_3^2)\\ a_2(a_1^2+a_2^2+a_3^2)&-a_1(a_1^2+a_2^2+a_3^2)&0 \end{matrix}\right]\tag{4.7}
=⎣⎡0−a3(a12+a22+a32)a2(a12+a22+a32)a3(a12+a22+a32)0−a1(a12+a22+a32)−a2(a12+a22+a32)a1(a12+a22+a32)0⎦⎤(4.7)
=
[
0
a
3
−
a
2
−
a
3
0
a
1
a
2
−
a
1
0
]
=
−
a
∧
(4.8)
=\left[\begin{matrix} 0&a_3&-a_2\\ -a_3&0&a_1\\ a_2&-a_1&0 \end{matrix}\right]=-a^\wedge\tag{4.8}
=⎣⎡0−a3a2a30−a1−a2a10⎦⎤=−a∧(4.8)
5、证明:
R
p
∧
R
T
=
(
R
p
)
∧
Rp^\wedge R^T=(Rp)^\wedge
Rp∧RT=(Rp)∧ . [参考]
设
R
=
[
r
1
,
r
2
,
r
3
]
∈
S
O
(
3
)
,
r
x
∈
R
3
,
p
=
[
a
1
,
a
2
,
a
3
]
T
R=[r_1,r_2,r_3]\in SO(3),\;r_x\in\mathbb{R}^3,\;p=[a_1,a_2,a_3]^T
R=[r1,r2,r3]∈SO(3),rx∈R3,p=[a1,a2,a3]T
求
证
R
p
∧
R
T
=
(
R
p
)
∧
即
证
p
∧
=
R
T
(
R
p
)
∧
R
(5.1)
\begin{aligned} &求证&\qquad Rp^\wedge R^T&=&&(Rp)^\wedge\\ &即证&p^\wedge&=&&R^T(Rp)^\wedge R\tag{5.1} \end{aligned}
求证即证Rp∧RTp∧==(Rp)∧RT(Rp)∧R(5.1)
考虑等式右边
(
R
p
)
∧
=
(
[
r
1
⃗
,
r
2
⃗
,
r
3
⃗
]
[
a
1
a
2
a
3
]
)
∧
(Rp)^\wedge=\left([\vec{r_1},\vec{r_2},\vec{r_3}]\left[\begin{matrix}a_1\\a_2\\a_3\end{matrix}\right]\right)^\wedge
(Rp)∧=⎝⎛[r1,r2,r3]⎣⎡a1a2a3⎦⎤⎠⎞∧
=
(
a
1
r
1
⃗
+
a
2
r
2
⃗
+
a
3
r
3
⃗
)
∧
=
a
1
r
1
⃗
∧
+
a
2
r
2
⃗
∧
+
a
3
r
3
⃗
∧
(5.2)
=\left(a_1\vec{r_1}+a_2\vec{r_2}+a_3\vec{r_3}\right)^\wedge=a_1{\vec{r_1}}^\wedge+a_2{\vec{r_2}}^\wedge+a_3{\vec{r_3}}^\wedge\tag{5.2}
=(a1r1+a2r2+a3r3)∧=a1r1∧+a2r2∧+a3r3∧(5.2)
可得
R
T
(
R
p
)
∧
R
=
[
r
1
⃗
T
r
2
⃗
T
r
3
⃗
T
]
(
a
1
r
1
⃗
∧
+
a
2
r
2
⃗
∧
+
a
3
r
3
⃗
∧
)
[
r
1
⃗
,
r
2
⃗
,
r
3
⃗
]
R^T(Rp)^\wedge R=\left[\begin{matrix}{\vec{r_1}}^T\\{\vec{r_2}}^T\\{\vec{r_3}}^T\end{matrix}\right](a_1{\vec{r_1}}^\wedge+a_2{\vec{r_2}}^\wedge+a_3{\vec{r_3}}^\wedge)[\vec{r_1},\vec{r_2},\vec{r_3}]
RT(Rp)∧R=⎣⎡r1Tr2Tr3T⎦⎤(a1r1∧+a2r2∧+a3r3∧)[r1,r2,r3]
=
a
1
[
r
1
⃗
T
r
2
⃗
T
r
3
⃗
T
]
r
1
⃗
∧
[
r
1
⃗
,
r
2
⃗
,
r
3
⃗
]
+
a
2
[
r
1
⃗
T
r
2
⃗
T
r
3
⃗
T
]
r
2
⃗
∧
[
r
1
⃗
,
r
2
⃗
,
r
3
⃗
]
+
a
3
[
r
1
⃗
T
r
2
⃗
T
r
3
⃗
T
]
r
3
⃗
∧
[
r
1
⃗
,
r
2
⃗
,
r
3
⃗
]
(5.3)
=a_1\left[\begin{matrix}{\vec{r_1}}^T\\{\vec{r_2}}^T\\{\vec{r_3}}^T\end{matrix}\right]{\vec{r_1}}^\wedge[\vec{r_1},\vec{r_2},\vec{r_3}]+ a_2\left[\begin{matrix}{\vec{r_1}}^T\\{\vec{r_2}}^T\\{\vec{r_3}}^T\end{matrix}\right]{\vec{r_2}}^\wedge[\vec{r_1},\vec{r_2},\vec{r_3}]+ a_3\left[\begin{matrix}{\vec{r_1}}^T\\{\vec{r_2}}^T\\{\vec{r_3}}^T\end{matrix}\right]{\vec{r_3}}^\wedge[\vec{r_1},\vec{r_2},\vec{r_3}]\tag{5.3}
=a1⎣⎡r1Tr2Tr3T⎦⎤r1∧[r1,r2,r3]+a2⎣⎡r1Tr2Tr3T⎦⎤r2∧[r1,r2,r3]+a3⎣⎡r1Tr2Tr3T⎦⎤r3∧[r1,r2,r3](5.3)
考虑第一项
a
1
[
r
1
⃗
T
r
2
⃗
T
r
3
⃗
T
]
r
1
⃗
∧
[
r
1
⃗
,
r
2
⃗
,
r
3
⃗
]
=
a
1
[
r
1
⃗
T
r
1
⃗
∧
r
1
⃗
r
1
⃗
T
r
1
⃗
∧
r
2
⃗
r
1
⃗
T
r
1
⃗
∧
r
3
⃗
r
2
⃗
T
r
1
⃗
∧
r
1
⃗
r
2
⃗
T
r
1
⃗
∧
r
2
⃗
r
2
⃗
T
r
1
⃗
∧
r
3
⃗
r
3
⃗
T
r
1
⃗
∧
r
1
⃗
r
3
⃗
T
r
1
⃗
∧
r
2
⃗
r
3
⃗
T
r
1
⃗
∧
r
3
⃗
]
(5.4)
a_1\left[\begin{matrix}{\vec{r_1}}^T\\{\vec{r_2}}^T\\{\vec{r_3}}^T\end{matrix}\right]{\vec{r_1}}^\wedge[\vec{r_1},\vec{r_2},\vec{r_3}]=a_1\left[\begin{matrix} {\vec{r_1}}^T{\vec{r_1}}^\wedge\vec{r_1}&{\vec{r_1}}^T{\vec{r_1}}^\wedge\vec{r_2}&{\vec{r_1}}^T{\vec{r_1}}^\wedge\vec{r_3}\\ {\vec{r_2}}^T{\vec{r_1}}^\wedge\vec{r_1}&{\vec{r_2}}^T{\vec{r_1}}^\wedge\vec{r_2}&{\vec{r_2}}^T{\vec{r_1}}^\wedge\vec{r_3}\\ {\vec{r_3}}^T{\vec{r_1}}^\wedge\vec{r_1}&{\vec{r_3}}^T{\vec{r_1}}^\wedge\vec{r_2}&{\vec{r_3}}^T{\vec{r_1}}^\wedge\vec{r_3} \end{matrix}\right]\tag{5.4}
a1⎣⎡r1Tr2Tr3T⎦⎤r1∧[r1,r2,r3]=a1⎣⎡r1Tr1∧r1r2Tr1∧r1r3Tr1∧r1r1Tr1∧r2r2Tr1∧r2r3Tr1∧r2r1Tr1∧r3r2Tr1∧r3r3Tr1∧r3⎦⎤(5.4)
因为
R
R
R 是正交阵,所以
R
R
R 矩阵的列向量(或行向量)两两垂直且模长为1,
又因为
”
∧
”
“\wedge”
“∧“ 可以看成向量叉乘,即
a
⃗
∧
b
⃗
=
a
⃗
×
b
⃗
{\vec{a}}^\wedge\vec{b}=\vec{a}\times\vec{b}
a∧b=a×b,根据右手坐标系可得
r
1
⃗
∧
r
1
⃗
=
0
,
r
1
⃗
∧
r
2
⃗
=
r
3
⃗
,
r
1
⃗
∧
r
3
⃗
=
−
r
2
⃗
{\vec{r_1}}^\wedge\vec{r_1}=0,\;{\vec{r_1}}^\wedge\vec{r_2}=\vec{r_3},\;{\vec{r_1}}^\wedge\vec{r_3}=-\vec{r_2}
r1∧r1=0,r1∧r2=r3,r1∧r3=−r2.
(
5.4
)
=
a
1
[
0
r
1
⃗
T
r
3
⃗
−
r
1
⃗
T
r
2
⃗
0
r
2
⃗
T
r
3
⃗
−
r
2
⃗
T
r
2
⃗
0
r
3
⃗
T
r
3
⃗
−
r
3
⃗
T
r
2
⃗
]
(5.5)
(5.4)=a_1\left[\begin{matrix} 0&{\vec{r_1}}^T\vec{r_3}&-{\vec{r_1}}^T\vec{r_2}\\ 0&{\vec{r_2}}^T\vec{r_3}&-{\vec{r_2}}^T\vec{r_2}\\ 0&{\vec{r_3}}^T\vec{r_3}&-{\vec{r_3}}^T\vec{r_2} \end{matrix}\right]\tag{5.5}
(5.4)=a1⎣⎡000r1Tr3r2Tr3r3Tr3−r1Tr2−r2Tr2−r3Tr2⎦⎤(5.5)
a
⃗
T
b
⃗
{\vec{a}}^T\vec{b}
aTb 可以看成向量点积
a
⃗
⋅
b
⃗
\vec{a}\cdot\vec{b}
a⋅b ,可得
(
5.5
)
=
a
1
[
0
0
0
0
0
−
1
0
1
0
]
(5.5)=a_1\left[\begin{matrix} 0&0&0\\ 0&0&-1\\ 0&1&0 \end{matrix}\right]
(5.5)=a1⎣⎡0000010−10⎦⎤
同理可得
a
2
[
r
1
⃗
T
r
2
⃗
T
r
3
⃗
T
]
r
2
⃗
∧
[
r
1
⃗
,
r
2
⃗
,
r
3
⃗
]
=
a
2
[
0
0
1
0
0
0
−
1
0
0
]
,
a
3
[
r
1
⃗
T
r
2
⃗
T
r
3
⃗
T
]
r
3
⃗
∧
[
r
1
⃗
,
r
2
⃗
,
r
3
⃗
]
=
a
3
[
0
−
1
0
1
0
0
0
0
0
]
a_2\left[\begin{matrix}{\vec{r_1}}^T\\{\vec{r_2}}^T\\{\vec{r_3}}^T\end{matrix}\right]{\vec{r_2}}^\wedge[\vec{r_1},\vec{r_2},\vec{r_3}]=a_2 \left[\begin{matrix} 0&0&1\\ 0&0&0\\ -1&0&0 \end{matrix}\right],\quad a_3\left[\begin{matrix}{\vec{r_1}}^T\\{\vec{r_2}}^T\\{\vec{r_3}}^T\end{matrix}\right]{\vec{r_3}}^\wedge[\vec{r_1},\vec{r_2},\vec{r_3}]=a_3 \left[\begin{matrix} 0&-1&0\\ 1&0&0\\ 0&0&0 \end{matrix}\right]
a2⎣⎡r1Tr2Tr3T⎦⎤r2∧[r1,r2,r3]=a2⎣⎡00−1000100⎦⎤,a3⎣⎡r1Tr2Tr3T⎦⎤r3∧[r1,r2,r3]=a3⎣⎡010−100000⎦⎤
带入
(
5.3
)
(5.3)
(5.3) 可得
(
5.3
)
=
[
0
−
a
3
a
2
a
3
0
−
a
1
−
a
2
a
1
0
]
=
p
∧
,
得
证
.
(5.3)=\left[\begin{matrix} 0&-a_3&a_2\\ a_3&0&-a_1\\ -a_2&a_1&0 \end{matrix}\right]=p^\wedge,\;得证.
(5.3)=⎣⎡0a3−a2−a30a1a2−a10⎦⎤=p∧,得证.
6、证明:
R
e
x
p
(
p
∧
)
R
T
=
e
x
p
(
(
R
p
)
∧
)
Rexp(p^\wedge)R^T=exp\left((Rp)^\wedge\right)
Rexp(p∧)RT=exp((Rp)∧) . [参考]
设
R
∈
S
O
(
3
)
,
p
∈
R
3
R\in SO(3),\;p\in\mathbb{R}^3
R∈SO(3),p∈R3
求
证
R
e
x
p
(
p
∧
)
R
T
=
e
x
p
(
(
R
p
)
∧
)
即
证
R
e
x
p
(
p
∧
)
R
T
=
e
x
p
(
R
p
∧
R
T
)
⋯
由
题
5
结
论
得
\begin{aligned} &求证&Rexp(p^\wedge)R^T&=&&exp\left((Rp)^\wedge\right)\\ &即证&Rexp(p^\wedge)R^T&=&&exp(Rp^\wedge R^T)\qquad\cdots 由题5结论得 \end{aligned}
求证即证Rexp(p∧)RTRexp(p∧)RT==exp((Rp)∧)exp(Rp∧RT)⋯由题5结论得
可将矩阵的指数映射写成一个泰勒展开
e
x
p
(
A
)
=
∑
n
=
0
∞
(
A
)
n
n
!
exp(A)=\sum_{n=0}^\infty\frac{(A)^n}{n!}
exp(A)=∑n=0∞n!(A)n, 于是可得
e
x
p
(
R
p
∧
R
T
)
=
∑
n
=
0
∞
(
R
p
∧
R
T
)
n
n
!
(6.1)
exp(Rp^\wedge R^T)=\sum_{n=0}^\infty\frac{(Rp^\wedge R^T)^n}{n!}\tag{6.1}
exp(Rp∧RT)=n=0∑∞n!(Rp∧RT)n(6.1)
易得
(
R
p
∧
R
T
)
n
=
R
p
∧
R
T
R
p
∧
R
T
R
p
∧
R
T
⋯
R
p
∧
R
T
=
R
(
p
∧
)
n
R
T
\begin{aligned} (Rp^\wedge R^T)^n&=&&Rp^\wedge R^TRp^\wedge R^TRp^\wedge R^T\cdots Rp^\wedge R^T\\ &=&&R(p^\wedge)^nR^T \end{aligned}
(Rp∧RT)n==Rp∧RTRp∧RTRp∧RT⋯Rp∧RTR(p∧)nRT
代入得
(
6.1
)
=
∑
n
=
0
∞
R
(
p
∧
)
n
R
T
n
!
=
R
(
∑
n
=
0
∞
(
p
∧
)
n
n
!
)
R
∧
=
R
e
x
p
(
p
∧
)
R
T
,
得
证
.
(6.1)=\sum_{n=0}^\infty\frac{R(p^\wedge)^nR^T}{n!}=R\left(\sum_{n=0}^\infty\frac{(p^\wedge)^n}{n!}\right)R^\wedge=Rexp(p^\wedge)R^T,\;得证.
(6.1)=n=0∑∞n!R(p∧)nRT=R(n=0∑∞n!(p∧)n)R∧=Rexp(p∧)RT,得证.
7、仿照左扰动的推导,推导
S
O
(
3
)
SO(3)
SO(3)和
S
E
(
3
)
SE(3)
SE(3)在右扰动下的导数
推导
S
O
(
3
)
SO(3)
SO(3)在右扰动下的导数
设右扰动
Δ
R
\Delta R
ΔR 所对应的李代数为
φ
\varphi
φ .
对
φ
\varphi
φ求导:
∂
(
R
p
)
∂
φ
=
lim
φ
→
0
e
x
p
(
ϕ
∧
)
e
x
p
(
φ
∧
)
p
−
e
x
p
(
ϕ
∧
)
p
φ
=
lim
φ
→
0
e
x
p
(
ϕ
∧
)
(
I
+
φ
∧
)
p
−
e
x
p
(
ϕ
∧
)
p
φ
⋯
泰
勒
展
开
并
舍
去
高
阶
项
=
lim
φ
→
0
e
x
p
(
ϕ
∧
)
φ
∧
p
φ
=
lim
φ
→
0
e
x
p
(
ϕ
∧
)
(
−
p
∧
φ
)
φ
⋯
叉
乘
的
性
质
=
−
e
x
p
(
ϕ
∧
)
p
∧
=
−
R
p
∧
\begin{aligned} \frac{\partial(Rp)}{\partial\varphi}&=&&\lim_{\varphi\rightarrow 0}\frac{exp(\phi^\wedge)exp(\varphi^\wedge)p-exp(\phi^\wedge)p}{\varphi}\\ &=&&\lim_{\varphi\rightarrow 0}\frac{exp(\phi^\wedge)(I+\varphi^\wedge)p-exp(\phi^\wedge)p}{\varphi}\quad&\cdots& 泰勒展开并舍去高阶项\\ &=&&\lim_{\varphi\rightarrow 0}\frac{exp(\phi^\wedge)\varphi^\wedge p}{\varphi}\\ &=&&\lim_{\varphi\rightarrow 0}\frac{exp(\phi^\wedge)(-p^\wedge \varphi)}{\varphi}&\cdots& 叉乘的性质\\ &=&&-exp(\phi^\wedge)p^\wedge\\ &=&&-Rp^\wedge \end{aligned}
∂φ∂(Rp)======φ→0limφexp(ϕ∧)exp(φ∧)p−exp(ϕ∧)pφ→0limφexp(ϕ∧)(I+φ∧)p−exp(ϕ∧)pφ→0limφexp(ϕ∧)φ∧pφ→0limφexp(ϕ∧)(−p∧φ)−exp(ϕ∧)p∧−Rp∧⋯⋯泰勒展开并舍去高阶项叉乘的性质
推导
S
E
(
3
)
SE(3)
SE(3)在右扰动下的导数
设右扰动
Δ
T
\Delta T
ΔT 所对应的李代数为
δ
ξ
\delta\xi
δξ .
对
δ
ξ
\delta\xi
δξ 求导:
∂
(
T
p
)
∂
δ
ξ
=
lim
δ
ξ
→
0
e
x
p
(
ξ
∧
)
e
x
p
(
δ
ξ
∧
)
p
−
e
x
p
(
ξ
∧
)
p
δ
ξ
=
lim
δ
ξ
→
0
e
x
p
(
ξ
∧
)
(
I
+
δ
ξ
∧
)
p
−
e
x
p
(
ξ
∧
)
p
δ
ξ
⋯
泰
勒
展
开
并
舍
去
高
阶
项
=
lim
δ
ξ
→
0
e
x
p
(
ξ
∧
)
δ
ξ
∧
p
δ
ξ
=
lim
δ
ξ
→
0
[
R
t
0
T
1
]
[
δ
ϕ
∧
δ
ρ
0
T
0
]
p
δ
ξ
⋯
这
里
的
p
是
齐
次
的
形
式
=
lim
δ
ξ
→
0
[
R
t
0
T
1
]
[
δ
ϕ
∧
p
+
δ
ρ
0
]
δ
ξ
⋯
这
里
的
p
是
非
齐
次
的
形
式
=
lim
δ
ξ
→
0
[
R
δ
ϕ
∧
p
+
R
δ
ρ
0
T
]
[
δ
ρ
,
δ
ϕ
]
T
=
lim
δ
ξ
→
0
[
−
R
p
∧
δ
ϕ
+
R
δ
ρ
0
T
]
[
δ
ρ
,
δ
ϕ
]
T
⋯
叉
乘
的
性
质
=
[
R
−
R
p
∧
0
T
0
T
]
\begin{aligned} \frac{\partial(Tp)}{\partial\delta\xi}&=&&\lim_{\delta\xi\rightarrow 0}\frac{exp(\xi^\wedge)exp(\delta\xi^\wedge)p-exp(\xi^\wedge)p}{\delta\xi}\\ &=&&\lim_{\delta\xi\rightarrow 0}\frac{exp(\xi^\wedge)(I+\delta\xi^\wedge)p-exp(\xi^\wedge)p}{\delta\xi}\quad&\cdots&泰勒展开并舍去高阶项\\ &=&&\lim_{\delta\xi\rightarrow 0}\frac{exp(\xi^\wedge)\delta\xi^\wedge p}{\delta\xi}\\ &=&&\lim_{\delta\xi\rightarrow 0}\frac{ \left[\begin{matrix}R&t\\0^T&1\end{matrix}\right] \left[\begin{matrix}\delta\phi^\wedge&\delta\rho\\0^T&0\end{matrix}\right]p }{\delta\xi}&\cdots&这里的p是齐次的形式\\ &=&&\lim_{\delta\xi\rightarrow 0}\frac{ \left[\begin{matrix}R&t\\0^T&1\end{matrix}\right] \left[\begin{matrix}\delta\phi^\wedge p+\delta\rho\\0\end{matrix}\right] }{\delta\xi}&\cdots&这里的p是非齐次的形式\\ &=&&\lim_{\delta\xi\rightarrow 0}\frac{ \left[\begin{matrix}R\delta\phi^\wedge p+R\delta\rho\\0^T\end{matrix}\right] }{[\delta\rho,\delta\phi]^T}\\ &=&&\lim_{\delta\xi\rightarrow 0}\frac{ \left[\begin{matrix}-Rp^\wedge\delta \phi+R\delta\rho\\0^T\end{matrix}\right] }{[\delta\rho,\delta\phi]^T}&\cdots&叉乘的性质\\ &=&&\left[\begin{matrix}R&-Rp^\wedge\\0^T&0^T\end{matrix}\right] \end{aligned}
∂δξ∂(Tp)========δξ→0limδξexp(ξ∧)exp(δξ∧)p−exp(ξ∧)pδξ→0limδξexp(ξ∧)(I+δξ∧)p−exp(ξ∧)pδξ→0limδξexp(ξ∧)δξ∧pδξ→0limδξ[R0Tt1][δϕ∧0Tδρ0]pδξ→0limδξ[R0Tt1][δϕ∧p+δρ0]δξ→0lim[δρ,δϕ]T[Rδϕ∧p+Rδρ0T]δξ→0lim[δρ,δϕ]T[−Rp∧δϕ+Rδρ0T][R0T−Rp∧0T]⋯⋯⋯⋯泰勒展开并舍去高阶项这里的p是齐次的形式这里的p是非齐次的形式叉乘的性质
最后一步的矩阵求导是按照以下规则求的
d
[
a
b
]
d
[
x
y
]
=
[
d
a
d
x
d
a
d
y
d
b
d
x
d
b
d
y
]
⋯
矩
阵
中
各
元
素
可
以
看
成
偏
导
的
结
果
\frac{d\left[\begin{matrix}a\\b\end{matrix}\right]} {d\left[\begin{matrix}x\\y\end{matrix}\right]}= \left[\begin{matrix} \frac{da}{dx}&\frac{da}{dy}\\ \frac{db}{dx}&\frac{db}{dy} \end{matrix}\right]\qquad\cdots 矩阵中各元素可以看成偏导的结果
d[xy]d[ab]=[dxdadxdbdydadydb]⋯矩阵中各元素可以看成偏导的结果
8、搜索cmake的find_package指令是如何运作的。它有哪些可选的参数?为了让cmake找到某个库,需要哪些先决条件?
略