0x00 前言

《视觉slam十四讲从理论到实践》第四讲习题自测解析。
借助自身知识储备和搜索引擎后完成习题,仅供参考。
部分答案会觉得没有说明的必要就会略

0x01 前置知识

  李群的定义

  群(Group)是一种集合加上一种运算的代数结构。我们把集合记作

A

A

A,运算记作

\cdot

,那么群可以记作

G

=

(

A

,

)

G=(A,\cdot)

G=(A,) 。群要求这个运算满足以下几个条件:

  1. 封闭性:  

    a

    1

    ,

    a

    2

    A

    ,

    a

    1

    a

    2

    A

    .

    \forall a_1,a_2\in A,\quad a_1\cdot a_2\in A.

    a1,a2A,a1a2A.
  2. 结合律:  

    a

    1

    ,

    a

    2

    ,

    a

    3

    A

    ,

    (

    a

    1

    a

    2

    )

    a

    3

    =

    a

    1

    (

    a

    2

    a

    3

    )

    .

    \forall a_1,a_2,a_3\in A,\quad (a_1\cdot a_2)\cdot a_3=a_1\cdot(a_2\cdot a_3).

    a1,a2,a3A,(a1a2)a3=a1(a2a3).
  3. 幺元:  

    a

    0

    A

    ,

    s

    .

    t

    .

    a

    A

    ,

    a

    0

    a

    =

    a

    a

    0

    =

    a

    .

    \exist a_0\in A,\quad s.t.\quad\forall a\in A,\quad a_0\cdot a=a\cdot a_0=a.

    a0A,s.t.aA,a0a=aa0=a.
  4. 逆:  

    a

    A

    ,

    a

    1

    A

    ,

    s

    .

    t

    .

    a

    a

    1

    =

    a

    0

    .

    \forall a\in A,\quad\exist a^{-1}\in A,\quad s.t.\quad a\cdot a^{-1}=a_0.

    aA,a1A,s.t.aa1=a0.

  李代数的定义

  李代数由一个集合

V

\mathbb{V}

V 、一个数域

F

\mathbb{F}

F 和一个二元运算

[

,

]

[,]

[,] 组成。如果它们满足以下几个性质,则称

(

V

,

F

,

[

,

]

)

(\mathbb{V},\mathbb{F},[,])

(V,F,[,]) 为一个李代数,记作

g

g

g

  1. 封闭性  

    X

    ,

    Y

    V

    ,

    [

    X

    ,

    Y

    ]

    V

    .

    \forall X,Y\in\mathbb{V},[X,Y]\in\mathbb{V}.

    X,YV,[X,Y]V.
  2. 双线性  

    X

    ,

    Y

    ,

    Z

    V

    ,

    a

    ,

    b

    F

    ,

    \forall X,Y,Z\in\mathbb{V},a,b\in\mathbb{F},有

    X,Y,ZV,a,bF,

    [

    a

    X

    +

    b

    Y

    ,

    Z

    ]

    =

    a

    [

    X

    ,

    Z

    ]

    +

    b

    [

    Y

    ,

    Z

    ]

    ,

    [

    Z

    ,

    a

    X

    +

    b

    Y

    ]

    =

    a

    [

    Z

    ,

    X

    ]

    +

    b

    [

    Z

    ,

    Y

    ]

    .

    [aX+bY,Z]=a[X,Z]+b[Y,Z],\qquad[Z,aX+bY]=a[Z,X]+b[Z,Y].

    [aX+bY,Z]=a[X,Z]+b[Y,Z],[Z,aX+bY]=a[Z,X]+b[Z,Y].

  3. 自反性  

    X

    V

    ,

    [

    X

    ,

    X

    ]

    =

    0.

    \forall X\in\mathbb{V},[X,X]=0.

    XV,[X,X]=0.
  4. 雅可比等价  

    X

    ,

    Y

    ,

    Z

    V

    ,

    [

    X

    ,

    [

    Y

    ,

    Z

    ]

    ]

    +

    [

    Z

    ,

    [

    X

    ,

    Y

    ]

    ]

    +

    [

    Y

    ,

    [

    Z

    ,

    X

    ]

    ]

    =

    0.

    \forall X,Y,Z\in\mathbb{V},[X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=0.

    X,Y,ZV,[X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=0.

0x02 习题部分

1、验证

S

O

(

3

)

S

E

(

3

)

S

i

m

(

3

)

SO(3)、SE(3)和Sim(3)

SO(3)SE(3)Sim(3)
关于乘法成群。

  验证

S

O

(

3

)

SO(3)

SO(3)

S

O

(

3

)

=

{

R

R

3

×

3

R

R

T

=

I

,

d

e

t

(

R

)

=

1

}

SO(3)=\left\{R\in\mathbb{R}^{3\times3}|RR^T=I,det(R)=1\right\}

SO(3)={RR3×3RRT=I,det(R)=1}

   封闭性

  从旋转矩阵的定义正交性入手,设

R

=

R

1

R

2

R

3

×

3

R=R_1R_2\in\mathbb{R}^{3\times3}

R=R1R2R3×3,

R

R

T

=

R

1

R

2

(

R

1

R

2

)

T

=

R

1

R

2

R

2

T

R

1

T

=

R

1

I

R

1

T

=

I

RR^T=R_1R_2(R_1R_2)^T=R_1R_2R_2^TR_1^T=R_1IR_1^T=I

RRT=R1R2(R1R2)T=R1R2R2TR1T=R1IR1T=I
  所以

R

=

R

1

R

2

S

O

(

3

)

R=R_1R_2\in SO(3)

R=R1R2SO(3)

满足封闭性


   结合律

  由矩阵乘法规律可知,矩阵乘法满足结合律,即满足

(

R

1

R

2

)

R

3

=

R

1

(

R

2

R

3

)

(R_1\cdot R_2)\cdot R_3=R_1\cdot (R_2\cdot R_3)

(R1R2)R3=R1(R2R3)

满足结合律


   幺元

  存在

R

=

I

,

R=I,

R=I, 使得

I

R

1

=

R

1

I

=

R

1

IR_1=R_1I=R_1

IR1=R1I=R1.

满足幺元


   逆

  设矩阵

R

S

O

(

3

)

R\in SO(3)

RSO(3) ,由正交性可知,

R

1

=

R

T

\exist R^{-1}=R^T

R1=RT ,使得

R

R

1

=

I

.

RR^{-1}=I.

RR1=I.

满足逆


  验证

S

E

(

3

)

SE(3)

SE(3)

S

E

(

3

)

=

{

T

=

[

R

t

0

T

1

]

R

4

×

4

R

S

O

(

3

)

,

t

R

3

}

SE(3)=\left\{T=\left[\begin{matrix}R&t\\0^T&1\end{matrix}\right]\in\mathbb{R}^{4\times4}|R\in SO(3),t\in\mathbb{R}^3\right\}

SE(3)={T=[R0Tt1]R4×4RSO(3),tR3}

   封闭性

  设

T

1

,

T

2

S

E

(

3

)

T_1,T_2\in SE(3)

T1,T2SE(3),

T

1

T

2

=

[

R

1

t

1

0

T

1

]

[

R

2

t

2

0

T

1

]

=

[

R

1

R

2

R

1

t

2

+

t

1

0

T

1

]

T_1T_2=\left[\begin{matrix}R_1&t_1\\0^T&1\end{matrix}\right] \left[\begin{matrix}R_2&t_2\\0^T&1\end{matrix}\right]= \left[\begin{matrix}R_1R_2&R_1t_2+t_1\\0^T&1\end{matrix}\right]

T1T2=[R10Tt11][R20Tt21]=[R1R20TR1t2+t11]
  由

S

O

(

3

)

SO(3)

SO(3) 的封闭性可知,

R

1

R

2

S

O

(

3

)

R_1R_2\in SO(3)

R1R2SO(3) ,由矩阵的运算规律可知

R

1

t

2

+

t

1

R

3

R_1t_2+t_1\in\mathbb{R}^3

R1t2+t1R3
  所以

T

1

T

2

S

E

(

3

)

T_1T_2\in SE(3)

T1T2SE(3)

满足封闭性


   结合律

  由矩阵乘法规律可知,矩阵乘法满足结合律,即满足

(

T

1

T

2

)

T

3

=

T

1

(

T

2

T

3

)

(T_1\cdot T_2)\cdot T_3=T_1\cdot (T_2\cdot T_3)

(T1T2)T3=T1(T2T3)

满足结合律


   幺元

  存在

T

=

I

,

T=I,

T=I, 使得

I

T

1

=

T

1

I

=

T

1

IT_1=T_1I=T_1

IT1=T1I=T1.

满足幺元


   逆

  设矩阵

T

S

E

(

3

)

T\in SE(3)

TSE(3) ,易得

R

S

O

(

3

)

R\in SO(3)

RSO(3) ,是一个满秩矩阵,所以

T

T

T 是一个满秩矩阵,所以

T

T

T 可逆,


  

T

1

\exist\;T^{-1}

T1 ,使得

T

T

1

=

I

.

TT^{-1}=I.

TT1=I.

满足逆


  验证

S

i

m

(

3

)

Sim(3)

Sim(3)


2、验证

(

R

3

,

R

,

×

)

(\mathbb{R}^3,\mathbb{R},\times)

(R3,R,×)
构成李代数。

 封闭性

 设

a

,

b

R

3

\vec{a},\vec{b}\in\mathbb{R}^3

a
,b
R3
,
 根据叉积的定义:

a

×

b

=

i

j

k

a

1

a

2

a

3

b

1

b

2

b

3

=

(

a

2

b

3

a

3

b

2

)

i

+

(

a

3

b

1

a

1

b

3

)

j

+

(

a

1

b

2

a

2

b

1

)

k

=

[

a

2

b

3

a

3

b

2

a

3

b

1

a

1

b

3

a

1

b

2

a

2

b

1

]

R

3

(2.1)

\vec{a}\times\vec{b}=\left|\begin{matrix} \vec{i}&\vec{j}&\vec{k}\\ a_1& a_2&a_3\\ b_1&b_2&b_3 \end{matrix}\right|=(a_2b_3-a_3b_2)\vec{i}+(a_3b_1-a_1b_3)\vec{j}+(a_1b_2-a_2b_1)\vec{k}=\left[\begin{matrix} a_2b_3-a_3b_2\\ a_3b_1-a_1b_3\\ a_1b_2-a_2b_1 \end{matrix}\right]\in\mathbb{R}^3\tag{2.1}

a
×
b
=
i
a1b1
j
a2b2
k
a3b3
=
(a2b3a3b2)i
+
(a3b1a1b3)j
+
(a1b2a2b1)k
=
a2b3a3b2a3b1a1b3a1b2a2b1R3(2.1)

满足封闭性


 双线性

 设

a

,

b

,

c

R

3

,

α

,

β

R

\vec{a},\vec{b},\vec{c}\in\mathbb{R}^3,\alpha,\beta\in\mathbb{R}

a
,b
,c
R3,α,βR
,

[

a

X

+

b

Y

,

Z

]

=

(

α

a

+

β

b

)

×

c

=

α

a

×

c

+

β

b

×

c

=

α

(

a

×

c

)

+

β

(

b

×

c

)

=

a

[

X

,

Z

]

+

b

[

Y

,

Z

]

(2.2)

\begin{aligned} &\quad[aX+bY,Z]=(\alpha\vec{a}+\beta\vec{b})\times\vec{c}\\ &=\alpha\vec{a}\times\vec{c}+\beta\vec{b}\times\vec{c}&\cdots&分配律\\ &=\alpha(\vec{a}\times\vec{c})+\beta(\vec{b}\times\vec{c})&\cdots&常数系数完全可以提出来\tag{2.2}\\ &=a[X,Z]+b[Y,Z] \end{aligned}

[aX+bY,Z]=(αa
+βb
)×c
=αa
×c
+βb
×c
=α(a
×c
)+β(b
×c
)
=a[X,Z]+b[Y,Z]
(2.2)

 同理

[

Z

,

a

X

+

b

Y

]

=

α

(

c

×

a

)

+

β

(

c

×

b

)

=

a

[

Z

,

X

]

+

b

[

Z

,

Y

]

[Z,aX+bY]=\alpha(\vec{c}\times\vec{a})+\beta(\vec{c}\times\vec{b})=a[Z,X]+b[Z,Y]

[Z,aX+bY]=α(c
×
a
)+
β(c
×
b
)=
a[Z,X]+b[Z,Y]

满足双线性


 自反性

 设

a

R

3

\vec{a}\in\mathbb{R}^3

a
R3

a

×

a

=

a

2

sin

<

a

,

a

>

=

0

(2.3)

\vec{a}\times\vec{a}={\left|\vec{a}\right|}^2\sin{<\vec{a},\vec{a}>}=0\tag{2.3}

a
×
a
=
a
2
sin<a
,a
>
=
0(2.3)

满足自反性


 雅可比等价

 设

a

,

b

,

c

R

3

\vec{a},\vec{b},\vec{c}\in\mathbb{R}^3

a
,b
,c
R3
,

[

X

,

[

Y

,

Z

]

]

+

[

Z

,

[

X

,

Y

]

]

+

[

Y

,

[

Z

,

X

]

]

=

a

×

(

b

×

c

)

+

c

×

(

a

×

b

)

+

b

×

(

c

×

a

)

(2.4)

[X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=\vec{a}\times(\vec{b}\times\vec{c})+\vec{c}\times(\vec{a}\times\vec{b})+\vec{b}\times(\vec{c}\times\vec{a})\tag{2.4}

[X,[Y,Z]]+[Z,[X,Y]]+[Y,[Z,X]]=a
×
(b
×
c
)+
c
×
(a
×
b
)+
b
×
(c
×
a
)
(2.4)

 将

a

,

b

,

c

\vec{a},\vec{b},\vec{c}

a
,b
,c
依次轮换得

b

×

(

c

×

a

)

+

a

×

(

b

×

c

)

+

c

×

(

a

×

b

)

(2.5)

\vec{b}\times(\vec{c}\times\vec{a})+\vec{a}\times(\vec{b}\times\vec{c})+\vec{c}\times(\vec{a}\times\vec{b})\tag{2.5}

b
×
(c
×
a
)+
a
×
(b
×
c
)+
c
×
(a
×
b
)
(2.5)

 易得式

(

2.4

)

(2.4)

(2.4)与式

(

2.5

)

(2.5)

(2.5)相等,所以可知

a

,

b

,

c

\vec{a},\vec{b},\vec{c}

a
,b
,c
轮换等价。那么可令

b

=

a

,

c

=

a

\vec{b}=\vec{a},\vec{c}=\vec{a}

b
=
a
,c
=
a
,代入

(

2.4

)

(2.4)

(2.4)

3

a

×

(

a

×

a

)

=

0

(2.6)

3\vec{a}\times(\vec{a}\times\vec{a})=0\qquad\cdots自反性\tag{2.6}

3a
×
(a
×
a
)=
0(2.6)

满足雅可比等价
注:这样子验证可能不严谨,高中遗留下来的做题技巧



3、验证

s

o

(

3

)

so(3)

so(3)

s

e

(

3

)

se(3)

se(3)
满足李代数要求的性质。

  验证

s

o

(

3

)

so(3)

so(3)

Φ

=

ϕ

=

[

0

ϕ

3

ϕ

2

ϕ

3

0

ϕ

1

ϕ

2

ϕ

1

0

]

\Phi={\vec\phi}^\wedge=\left[ \begin{matrix} 0&-\vec\phi_3&\vec\phi_2\\ \vec\phi_3&0&-\vec\phi_1\\ -\vec\phi_2&\vec\phi_1&0 \end{matrix}\right]

Φ=ϕ
=
0ϕ
3
ϕ
2
ϕ
3
0ϕ
1
ϕ
2
ϕ
1
0

s

o

(

3

)

=

{

ϕ

R

3

,

Φ

=

ϕ

R

3

×

3

}

so(3)=\left\{\phi\in\mathbb{R}^3,\Phi=\phi^\wedge\in\mathbb{R}^{3\times3}\right\}

so(3)={ϕR3,Φ=ϕR3×3}

[

ϕ

1

,

ϕ

2

]

=

(

Φ

1

Φ

2

Φ

2

Φ

1

)

(3.1)

[\vec\phi_1,\vec\phi_2]=(\Phi_1\Phi_2-\Phi_2\Phi_1)^\vee\tag{3.1}

[ϕ
1
,ϕ
2
]=
(Φ1Φ2Φ2Φ1)(3.1)

   封闭性

  设

ϕ

=

[

x

,

y

,

z

]

T

R

3

\vec{\phi}=[x,y,z]^T\in\mathbb{R}^3

ϕ
=
[x,y,z]TR3
,

[

ϕ

1

,

ϕ

2

]

=

(

Φ

1

Φ

2

Φ

2

Φ

1

)

[\vec\phi_1,\vec\phi_2]=(\Phi_1\Phi_2-\Phi_2\Phi_1)^\vee

[ϕ
1
,ϕ
2
]=
(Φ1Φ2Φ2Φ1)

=

(

[

0

z

1

y

1

z

1

0

x

1

y

1

x

1

0

]

[

0

z

2

y

2

z

2

0

x

2

y

2

x

2

0

]

[

0

z

2

y

2

z

2

0

x

2

y

2

x

2

0

]

[

0

z

1

y

1

z

1

0

x

1

y

1

x

1

0

]

)

=\left(\left[\begin{matrix}0&-z_1&y_1\\ z_1&0&-x_1\\ -y_1&x_1&0\end{matrix}\right] \left[\begin{matrix} 0&-z_2&y_2\\ z_2&0&-x_2\\ -y_2&x_2&0\end{matrix}\right] – \left[\begin{matrix} 0&-z_2&y_2\\ z_2&0&-x_2\\ -y_2&x_2&0 \end{matrix}\right] \left[\begin{matrix} 0&-z_1&y_1\\ z_1&0&-x_1\\ -y_1&x_1&0 \end{matrix}\right] \right)^\vee

=0z1y1z10x1y1x100z2y2z20x2y2x200z2y2z20x2y2x200z1y1z10x1y1x10

=

(

[

z

1

z

2

y

1

y

2

x

2

y

1

x

2

z

1

x

1

y

2

z

1

z

2

x

1

x

2

y

2

z

1

x

1

z

2

y

1

z

2

y

1

y

2

x

1

x

2

]

[

z

1

z

2

y

1

y

2

x

1

y

2

x

1

z

2

x

2

y

1

z

1

z

2

x

1

x

2

y

1

z

2

x

2

z

1

y

2

z

1

y

1

y

2

x

1

x

2

]

)

=\left(\left[\begin{matrix} -z_1z_2-y_1y_2&x_2y_1&x_2z_1\\ x_1y_2&-z_1z_2-x_1x_2&y_2z_1\\ x_1z_2&y_1z_2&-y_1y_2-x_1x_2 \end{matrix}\right]- \left[\begin{matrix} -z_1z_2-y_1y_2&x_1y_2&x_1z_2\\ x_2y_1&-z_1z_2-x_1x_2&y_1z_2\\ x_2z_1&y_2z_1&-y_1y_2-x_1x_2 \end{matrix}\right]\right)^{\vee}

=z1z2y1y2x1y2x1z2x2y1z1z2x1x2y1z2x2z1y2z1y1y2x1x2z1z2y1y2x2y1x2z1x1y2z1z2x1x2y2z1x1z2y1z2y1y2x1x2

=

(

[

0

x

2

y

1

x

1

y

2

x

2

z

1

x

1

z

2

x

1

y

2

x

2

y

1

0

y

2

z

1

y

1

z

2

x

1

z

2

x

2

z

1

y

1

z

2

y

2

z

1

0

]

)

=

(

ϕ

3

)

(3.2)

=\left(\left[\begin{matrix} 0&x_2y_1-x_1y_2&x_2z_1-x_1z_2\\ x_1y_2-x_2y_1&0&y_2z_1-y_1z_2\\ x_1z_2-x_2z_1&y_1z_2-y_2z_1&0 \end{matrix}\right] \right)^{\vee}=\left({\vec\phi_3}^\wedge\right)^\vee \tag{3.2}

=0x1y2x2y1x1z2x2z1x2y1x1y20y1z2y2z1x2z1x1z2y2z1y1z20=(ϕ
3
)
(3.2)

  由

(

3.2

)

(3.2)

(3.2)易得

ϕ

3

{\vec\phi_3}^\wedge

ϕ
3
是一个反对称矩阵,所以可以经由运算

[

]

[\vee]

[]从反对称矩阵到向量的变换。所以

(

ϕ

3

)

=

ϕ

3

R

3

\left({\vec\phi_3}^\wedge\right)^\vee=\vec\phi_3\in\mathbb{R}^3

(ϕ
3
)
=
ϕ
3
R3

满足封闭性


   双线性

  设

ϕ

1

,

ϕ

2

,

ϕ

3

R

3

,
  

a

,

b

R

\vec\phi_1,\vec\phi_2,\vec\phi_3\in\mathbb{R}^3,\;a,b\in\mathbb{R}

ϕ
1
,ϕ
2
,ϕ
3
R3,a,bR

[

a

ϕ

1

+

b

ϕ

2

,

ϕ

3

]

=

(

(

a

ϕ

1

+

b

ϕ

2

)

ϕ

3

ϕ

3

(

a

ϕ

1

+

b

ϕ

2

)

)

=

(

a

ϕ

1

ϕ

3

+

b

ϕ

2

ϕ

3

(

a

ϕ

3

ϕ

1

+

b

ϕ

3

ϕ

2

)

)

=

(

a

(

ϕ

1

ϕ

3

ϕ

3

ϕ

1

)

+

b

(

ϕ

2

ϕ

3

ϕ

3

ϕ

2

)

)

(3.3)

\begin{aligned} &\qquad[a\vec\phi_1+b\vec\phi_2,\vec\phi_3]\\ &=\left((a\vec\phi_1+b\vec\phi_2)^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge(a\vec\phi_1+b\vec\phi_2)^\wedge\right)^\vee\\ &=\left(a{\vec\phi_1}^\wedge{\vec\phi_3}^\wedge+b{\vec\phi_2}^\wedge{\vec\phi_3}^\wedge-(a{\vec\phi_3}^\wedge{\vec\phi_1}^\wedge+b{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge)\right)^\vee\\ &=\left(a({\vec\phi_1}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_1}^\wedge)+b({\vec\phi_2}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge)\right)^\vee \end{aligned}\tag{3.3}

[aϕ
1
+bϕ
2
,ϕ
3
]
=((aϕ
1
+bϕ
2
)ϕ
3
ϕ
3
(aϕ
1
+bϕ
2
))
=(aϕ
1
ϕ
3
+bϕ
2
ϕ
3
(aϕ
3
ϕ
1
+bϕ
3
ϕ
2
))
=(a(ϕ
1
ϕ
3
ϕ
3
ϕ
1
)+b(ϕ
2
ϕ
3
ϕ
3
ϕ
2
))
(3.3)

  由封闭性可知,

(

ϕ

1

ϕ

3

ϕ

3

ϕ

1

)

({\vec\phi_1}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_1}^\wedge)

(ϕ
1
ϕ
3
ϕ
3
ϕ
1
)
是反对称矩阵,所以可以得到

=

a

(

ϕ

1

ϕ

3

ϕ

3

ϕ

1

)

+

b

(

ϕ

2

ϕ

3

ϕ

3

ϕ

2

)

=

a

[

ϕ

1

,

ϕ

3

]

+

b

[

ϕ

2

,

ϕ

3

]

(3.4)

\begin{aligned} &=a({\vec\phi_1}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_1}^\wedge)^\vee+b({\vec\phi_2}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge)^\vee\\ &=a[\vec\phi_1,\vec\phi_3]+b[\vec\phi_2,\vec\phi_3] \end{aligned}\tag{3.4}

=a(ϕ
1
ϕ
3
ϕ
3
ϕ
1
)+b(ϕ
2
ϕ
3
ϕ
3
ϕ
2
)
=a[ϕ
1
,ϕ
3
]+b[ϕ
2
,ϕ
3
]
(3.4)

  同理可得

[

ϕ

3

,

a

ϕ

1

+

b

ϕ

2

]

=

a

[

ϕ

3

,

ϕ

1

]

+

b

[

ϕ

3

,

ϕ

2

]

(3.5)

[\vec\phi_3,a\vec\phi_1+b\vec\phi_2]=a[\vec\phi_3,\vec\phi_1]+b[\vec\phi_3,\vec\phi_2]\tag{3.5}

[ϕ
3
,aϕ
1
+
bϕ
2
]=
a[ϕ
3
,ϕ
1
]+
b[ϕ
3
,ϕ
2
]
(3.5)

满足双线性


   自反性

  设

ϕ

R

3

\vec\phi\in\mathbb{R}^3

ϕ
R3

[

ϕ

,

ϕ

]

=

(

ϕ

ϕ

ϕ

ϕ

)

=

0

T

(3.6)

[\vec\phi,\vec\phi]=\left({\vec\phi}^\wedge{\vec\phi}^\wedge-{\vec\phi}^\wedge{\vec\phi}^\wedge\right)^\vee=0^T\qquad\cdots很显然\tag{3.6}

[ϕ
,ϕ
]=
(ϕ
ϕ
ϕ
ϕ
)
=
0T(3.6)

满足自反性


   雅可比等价

  设

ϕ

1

,

ϕ

2

,

ϕ

3

R

3

\vec\phi_1,\vec\phi_2,\vec\phi_3\in\mathbb{R}^3

ϕ
1
,ϕ
2
,ϕ
3
R3

[

ϕ

1

,

[

ϕ

2

,

ϕ

3

]

]

+

[

ϕ

3

,

[

ϕ

1

,

ϕ

2

]

]

+

[

ϕ

2

,

[

ϕ

3

,

ϕ

1

]

]

=

ϕ

1

(

ϕ

2

ϕ

3

ϕ

3

ϕ

2

)

(

ϕ

2

ϕ

3

ϕ

3

ϕ

2

)

ϕ

1

+

ϕ

3

(

ϕ

1

ϕ

2

ϕ

2

ϕ

1

)

(

ϕ

1

ϕ

2

ϕ

2

ϕ

1

)

ϕ

3

+

ϕ

2

(

ϕ

3

ϕ

1

ϕ

1

ϕ

3

)

(

ϕ

3

ϕ

1

ϕ

1

ϕ

3

)

ϕ

2

=

ϕ

1

ϕ

2

ϕ

3

ϕ

1

ϕ

3

ϕ

2

ϕ

2

ϕ

3

ϕ

1

+

ϕ

3

ϕ

2

ϕ

1

+

ϕ

3

ϕ

1

ϕ

2

ϕ

3

ϕ

2

ϕ

1

ϕ

1

ϕ

2

ϕ

3

+

ϕ

2

ϕ

1

ϕ

3

+

ϕ

2

ϕ

3

ϕ

1

ϕ

2

ϕ

1

ϕ

3

ϕ

3

ϕ

1

ϕ

2

+

ϕ

1

ϕ

3

ϕ

2

=

0

\begin{aligned} &\qquad[\vec\phi_1,[\vec\phi_2,\vec\phi_3]]+[\vec\phi_3,[\vec\phi_1,\vec\phi_2]]+[\vec\phi_2,[\vec\phi_3,\vec\phi_1]]\\ &=\quad{\vec\phi_1}^\wedge({\vec\phi_2}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge)-({\vec\phi_2}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge){\vec\phi_1}^\wedge\\ &\quad+{\vec\phi_3}^\wedge({\vec\phi_1}^\wedge{\vec\phi_2}^\wedge-{\vec\phi_2}^\wedge{\vec\phi_1}^\wedge)-({\vec\phi_1}^\wedge{\vec\phi_2}^\wedge-{\vec\phi_2}^\wedge{\vec\phi_1}^\wedge){\vec\phi_3}^\wedge\\ &\quad+{\vec\phi_2}^\wedge({\vec\phi_3}^\wedge{\vec\phi_1}^\wedge-{\vec\phi_1}^\wedge{\vec\phi_3}^\wedge)-({\vec\phi_3}^\wedge{\vec\phi_1}^\wedge-{\vec\phi_1}^\wedge{\vec\phi_3}^\wedge){\vec\phi_2}^\wedge\\ &=\quad{\vec\phi_1}^\wedge{\vec\phi_2}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_1}^\wedge{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge-{\vec\phi_2}^\wedge{\vec\phi_3}^\wedge{\vec\phi_1}^\wedge+{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge{\vec\phi_1}^\wedge\\ &\quad+{\vec\phi_3}^\wedge{\vec\phi_1}^\wedge{\vec\phi_2}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge{\vec\phi_1}^\wedge-{\vec\phi_1}^\wedge{\vec\phi_2}^\wedge{\vec\phi_3}^\wedge+{\vec\phi_2}^\wedge{\vec\phi_1}^\wedge{\vec\phi_3}^\wedge\\ &\quad+{\vec\phi_2}^\wedge{\vec\phi_3}^\wedge{\vec\phi_1}^\wedge-{\vec\phi_2}^\wedge{\vec\phi_1}^\wedge{\vec\phi_3}^\wedge-{\vec\phi_3}^\wedge{\vec\phi_1}^\wedge{\vec\phi_2}^\wedge+{\vec\phi_1}^\wedge{\vec\phi_3}^\wedge{\vec\phi_2}^\wedge\\ &=0 \end{aligned}

[ϕ
1
,[ϕ
2
,ϕ
3
]]+[ϕ
3
,[ϕ
1
,ϕ
2
]]+[ϕ
2
,[ϕ
3
,ϕ
1
]]
=ϕ
1
(ϕ
2
ϕ
3
ϕ
3
ϕ
2
)(ϕ
2
ϕ
3
ϕ
3
ϕ
2
)ϕ
1
+ϕ
3
(ϕ
1
ϕ
2
ϕ
2
ϕ
1
)(ϕ
1
ϕ
2
ϕ
2
ϕ
1
)ϕ
3
+ϕ
2
(ϕ
3
ϕ
1
ϕ
1
ϕ
3
)(ϕ
3
ϕ
1
ϕ
1
ϕ
3
)ϕ
2
=ϕ
1
ϕ
2
ϕ
3
ϕ
1
ϕ
3
ϕ
2
ϕ
2
ϕ
3
ϕ
1
+ϕ
3
ϕ
2
ϕ
1
+ϕ
3
ϕ
1
ϕ
2
ϕ
3
ϕ
2
ϕ
1
ϕ
1
ϕ
2
ϕ
3
+ϕ
2
ϕ
1
ϕ
3
+ϕ
2
ϕ
3
ϕ
1
ϕ
2
ϕ
1
ϕ
3
ϕ
3
ϕ
1
ϕ
2
+ϕ
1
ϕ
3
ϕ
2
=0

满足雅可比等价


  验证

s

e

(

3

)

se(3)

se(3)

s

e

(

3

)

=

{

ξ

=

[

ρ

ϕ

]

R

6

,

ρ

R

3

,

ϕ

s

o

(

3

)

,

ξ

=

[

ϕ

ρ

0

T

0

]

R

4

×

4

}

se(3)=\left\{\xi=\left[\begin{matrix}\rho\\\phi\end{matrix}\right]\in\mathbb{R}^6,\rho\in\mathbb{R}^3,\phi\in so(3),\xi^\wedge=\left[\begin{matrix}\phi^\wedge&\rho\\0^T&0\end{matrix}\right]\in\mathbb{R^{4\times4}}\right\}

se(3)={ξ=[ρϕ]R6,ρR3,ϕso(3),ξ=[ϕ0Tρ0]R4×4}

[

ξ

1

,

ξ

2

]

=

(

ξ

1

ξ

2

ξ

2

ξ

1

)

[\vec\xi_1,\vec\xi_2]=\left({\vec\xi_1}^\wedge{\vec\xi_2}^\wedge-{\vec\xi_2}^\wedge{\vec\xi_1}^\wedge\right)^\vee

[ξ
1
,ξ
2
]=
(ξ
1
ξ
2
ξ
2
ξ
1
)

   封闭性

  设

ξ

1

,

ξ

2

s

e

(

3

)

\vec\xi_1,\vec\xi_2\in se(3)

ξ
1
,ξ
2
se(3)
,

[

ξ

1

,

ξ

2

]

=

(

ξ

1

ξ

2

ξ

2

ξ

1

)

[\vec\xi_1,\vec\xi_2]=\left({\vec\xi_1}^\wedge{\vec\xi_2}^\wedge-{\vec\xi_2}^\wedge{\vec\xi_1}^\wedge\right)^\vee

[ξ
1
,ξ
2
]=
(ξ
1
ξ
2
ξ
2
ξ
1
)

=

(

[

ϕ

1

ρ

1

0

T

0

]

[

ϕ

2

ρ

2

0

T

0

]

[

ϕ

2

ρ

2

0

T

0

]

[

ϕ

1

ρ

1

0

T

0

]

)

(3.7)

=\left( \left[\begin{matrix} {\vec\phi_1}^\wedge&\vec\rho_1\\0^T&0 \end{matrix}\right] \left[\begin{matrix} {\vec\phi_2}^\wedge&\vec\rho_2\\0^T&0 \end{matrix}\right]- \left[\begin{matrix} {\vec\phi_2}^\wedge&\vec\rho_2\\0^T&0 \end{matrix}\right] \left[\begin{matrix} {\vec\phi_1}^\wedge&\vec\rho_1\\0^T&0 \end{matrix}\right] \right)^\vee\tag{3.7}

=([ϕ
1
0T
ρ
1
0
]
[ϕ
2
0T
ρ
2
0
]
[ϕ
2
0T
ρ
2
0
]
[ϕ
1
0T
ρ
1
0
]
)
(3.7)

=

(

[

ϕ

1

ϕ

2

ϕ

1

ρ

2

0

T

0

]

[

ϕ

2

ϕ

1

ϕ

2

ρ

1

0

T

0

]

)

(3.8)

=\left(\left[\begin{matrix} {\vec\phi_1}^\wedge{\vec\phi_2}^\wedge&{\vec\phi_1}^\wedge\vec\rho_2\\0^T&0 \end{matrix}\right]- \left[\begin{matrix} {\vec\phi_2}^\wedge{\vec\phi_1}^\wedge&{\vec\phi_2}^\wedge\vec\rho_1\\0^T&0 \end{matrix}\right] \right)^\vee\tag{3.8}

=([ϕ
1
ϕ
2
0T
ϕ
1
ρ
2
0
]
[ϕ
2
ϕ
1
0T
ϕ
2
ρ
1
0
]
)
(3.8)

=

(

[

ϕ

1

ϕ

2

ϕ

2

ϕ

1

ϕ

1

ρ

2

ϕ

2

ρ

1

0

T

0

]

)

(3.9)

=\left( \left[\begin{matrix} {\vec\phi_1}^\wedge{\vec\phi_2}^\wedge-{\vec\phi_2}^\wedge{\vec\phi_1}^\wedge&{\vec\phi_1}^\wedge\vec\rho_2-{\vec\phi_2}^\wedge\vec\rho_1\\0^T&0 \end{matrix}\right] \right)^\vee\tag{3.9}

=([ϕ
1
ϕ
2
ϕ
2
ϕ
1
0T
ϕ
1
ρ
2
ϕ
2
ρ
1
0
]
)
(3.9)

  由

s

o

(

3

)

so(3)

so(3)封闭性可知,

ϕ

1

ϕ

2

ϕ

2

ϕ

1

=

ϕ

3

,
  

ϕ

3

s

o

(

3

)

{\vec\phi_1}^\wedge{\vec\phi_2}^\wedge-{\vec\phi_2}^\wedge{\vec\phi_1}^\wedge={\vec\phi_3}^\wedge,\;\vec\phi_3\in so(3)

ϕ
1
ϕ
2
ϕ
2
ϕ
1
=
ϕ
3
,ϕ
3
so(3)
;由矩阵的运算可知

ϕ

1

ρ

2

ϕ

2

ρ

1

R

3

{\vec\phi_1}^\wedge\vec\rho_2-{\vec\phi_2}^\wedge\vec\rho_1\in\mathbb{R}^3

ϕ
1
ρ
2
ϕ
2
ρ
1
R3
,所以可令

(

3.9

)

=

(

ξ

3

)

=

ξ

3

s

e

(

3

)

(3.10)

式(3.9)=\left({\vec\xi_3}^\wedge\right)^\vee=\vec\xi_3\in se(3)\tag{3.10}

(3.9)=(ξ
3
)
=
ξ
3
se(3)(3.10)

满足封闭性


   双线性

  设

ξ

1

,

ξ

2

,

ξ

3

s

e

(

3

)

\vec\xi_1,\vec\xi_2,\vec\xi_3\in se(3)

ξ
1
,ξ
2
,ξ
3
se(3)
,

[

a

ξ

1

+

b

ξ

2

,

ξ

3

]

=

(

(

a

ξ

1

+

b

ξ

2

)

ξ

3

ξ

3

(

a

ξ

1

+

b

ξ

2

)

)

=

(

(

a

ξ

1

+

b

ξ

2

)

ξ

3

ξ

3

(

a

ξ

1

+

b

ξ

2

)

)

=

(

a

ξ

1

ξ

3

+

b

ξ

2

ξ

3

(

a

ξ

3

ξ

1

+

b

ξ

3

ξ

2

)

)

=

(

a

(

ξ

1

ξ

3

ξ

3

ξ

1

)

+

b

(

ξ

2

ξ

3

ξ

3

ξ

2

)

)

=

a

(

ξ

1

ξ

3

ξ

3

ξ

1

)

+

b

(

ξ

2

ξ

3

ξ

3

ξ

2

)

=

a

[

ξ

1

,

ξ

3

]

+

b

[

ξ

2

,

ξ

3

]

(3.11)

\begin{aligned} &\qquad[a\vec\xi_1+b\vec\xi_2,\vec\xi_3]\\ &=\left((a\vec\xi_1+b\vec\xi_2)^\wedge{\vec\xi_3}^\wedge-{\vec\xi_3}^\wedge(a\vec\xi_1+b\vec\xi_2)^\wedge\right)^\vee\\ &=\left((a{\vec\xi_1}^\wedge+{b\vec\xi_2}^\wedge){\vec\xi_3}^\wedge-{\vec\xi_3}^\wedge(a{\vec\xi_1}^\wedge+{b\vec\xi_2}^\wedge)\right)^\vee\\ &=\left(a{\vec\xi_1}^\wedge{\vec\xi_3}^\wedge+b{\vec\xi_2}^\wedge{\vec\xi_3}^\wedge-(a{\vec\xi_3}^\wedge{\vec\xi_1}^\wedge+b{\vec\xi_3}^\wedge{\vec\xi_2}^\wedge)\right)^\vee\\ &=\left(a({\vec\xi_1}^\wedge{\vec\xi_3}^\wedge-{\vec\xi_3}^\wedge{\vec\xi_1}^\wedge)+b({\vec\xi_2}^\wedge{\vec\xi_3}^\wedge-{\vec\xi_3}^\wedge{\vec\xi_2}^\wedge)\right)^\vee\\ &=a({\vec\xi_1}^\wedge{\vec\xi_3}^\wedge-{\vec\xi_3}^\wedge{\vec\xi_1}^\wedge)^\vee+b({\vec\xi_2}^\wedge{\vec\xi_3}^\wedge-{\vec\xi_3}^\wedge{\vec\xi_2}^\wedge)^\vee\\ &=a[\vec\xi_1,\vec\xi_3]+b[\vec\xi_2,\vec\xi_3] \end{aligned}\tag{3.11}

[aξ
1
+bξ
2
,ξ
3
]
=((aξ
1
+bξ
2
)ξ
3
ξ
3
(aξ
1
+bξ
2
))
=((aξ
1
+bξ
2
)ξ
3
ξ
3
(aξ
1
+bξ
2
))
=(aξ
1
ξ
3
+bξ
2
ξ
3
(aξ
3
ξ
1
+bξ
3
ξ
2
))
=(a(ξ
1
ξ
3
ξ
3
ξ
1
)+b(ξ
2
ξ
3
ξ
3
ξ
2
))
=a(ξ
1
ξ
3
ξ
3
ξ
1
)+b(ξ
2
ξ
3
ξ
3
ξ
2
)
=a[ξ
1
,ξ
3
]+b[ξ
2
,ξ
3
]
(3.11)

  同理可得

[

ξ

3

,

a

ξ

1

+

b

ξ

2

]

=

a

[

ξ

3

,

ξ

1

]

+

b

[

ξ

3

,

ξ

2

]

(3.12)

[\vec\xi_3,a\vec\xi_1+b\vec\xi_2