比赛时一看这题操作这么多, 还有gcd三角形神马的以为是个神题, 后来发现这题其实挺基础的, 就是用并查集和平衡树同时维护若干集合, 合并时用启发式第二个删点操作是并查集中的经典操作, 做法就是找一个新的点替代原来的点类似http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18692, 第一种查询找到最小次小元素然后进行斐波那契式的迭代, 每次查询后继元素, 第二种查询直接维护子树的gcd查询时从上向下搞一遍就可以了, 细节见代码。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
using namespace std;
inline int read() {//used to read 32bit positive integer
char c = getchar();
while (!isdigit(c)) c = getchar();
int x = 0;
while (isdigit(c)) {
x = x * 10 + c - '0';
c = getchar();
}
return x;
}
int gcd(int a, int b) {
return b == 0 ? a : gcd(b, a % b);
}
const int N = 210005;
const int INF = (int)2e9;
int root[N], fa[N], W[N], now[N];
int r[N], v[N], ch[N][2], sz[N], maxv[N], minv[N], D[N];
int it, n, m, id;
void init() {
minv[0] = INF;
it = 1;
id = n + 1;
memset(root, 0, sizeof(root));
for (int i = 1; i <= n; i++) now[i] = i, fa[i] = i;
}
int find(int u) {
return fa[u] == u ? u : fa[u] = find(fa[u]);
}
#define lch ch[rt][0]
#define rch ch[rt][1]
inline void push_up(int rt) {
sz[rt] = sz[lch] + sz[rch] + 1;
maxv[rt] = max(maxv[lch], maxv[rch]);
maxv[rt] = max(maxv[rt], v[rt]);
minv[rt] = min(minv[lch], minv[rch]);
minv[rt] = min(v[rt], minv[rt]);
D[rt] = gcd(v[rt], D[lch]);
D[rt] = gcd(D[rt], D[rch]);
}
inline int cmp(int rt, int x) {
if (v[rt] == x) return -1;
else if (x < v[rt])
return 0;
else
return 1;
}
void rotate(int& rt, int d) {
int t = ch[rt][d ^ 1];
ch[rt][d ^ 1] = ch[t][d];
ch[t][d] = rt;
push_up(rt);
push_up(t);
rt = t;
}
void insert(int& rt, int x, bool flag) { //falg == 0 x is a number otherwise...
if (!rt) {
if (!flag) {
rt = it++;
v[rt] = x;
r[rt] = rand();
lch = rch = 0;
sz[rt] = 1;
D[rt] = x;
maxv[rt] = minv[rt] = x;
}
else {
rt = x;
sz[rt] = 1;
minv[rt] = v[rt];
maxv[rt] = v[rt];
D[rt] = v[rt];
lch = rch = 0;
}
}
else {
int d = ((flag ? v[x] : x) < v[rt] ? 0 : 1);
insert(ch[rt][d], x, flag);
if (r[ch[rt][d]] > r[rt])
rotate(rt, d ^ 1);
}
push_up(rt);
}
int kth(int rt, int k) {
int t = sz[lch] + 1;
if (k == t)
return v[rt];
else if (k < t)
return kth(lch, k);
else
return kth(rch, k - t);
}
void remove(int& rt, int x) {
int d = cmp(rt, x);
if (d == -1) {
if (lch && rch) {
int d2 = r[lch] > r[rch] ? 0 : 1;
rotate(rt, d2 ^ 1);
remove(ch[rt][d2 ^ 1], x);
push_up(rt);
}
else {
rt = lch ? lch : rch;
}
}
else {
remove(ch[rt][d], x);
push_up(rt);
}
}
/*
int pred(int rt, int x) {
if (!rt) return INF;
else if (x > v[rt]) {
int res = pred(rch, x);
if (res == INF) return v[rt];
return res;
}
else
return pred(lch, x);
}*/
int pred(int rt, int x) {
if (!rt) return INF;
if (x == v[rt]) return x;
else if (x > v[rt]) {
int res = pred(rch, x);
if (res == INF) return v[rt];
return res;
}
else
return pred(lch, x);
}
/*
int succ(int rt, int x) {
if (!rt) return INF;
else if (x < v[rt]) {
int res = succ(lch, x);
if (res == INF) return v[rt];
return res;
}
else
return succ(rch, x);
}*/
int succ(int rt, int x) {
if (!rt) return INF;
if (x == v[rt]) return x;
else if (x < v[rt]) {
int res = succ(lch, x);
if (res == INF) return v[rt];
return res;
}
else
return succ(rch, x);
}
int ans;
void query(int rt, int l, int r) {
if (!rt || maxv[rt] < l || minv[rt] > r) return;
if (l <= minv[rt] && maxv[rt] <= r) {
ans = gcd(ans, D[rt]);
return;
}
if (v[rt] >= l && v[rt] <= r)
ans = gcd(ans, v[rt]);
if (l < v[rt])
query(lch, l, r);
if (r > v[rt])
query(rch, l, r);
}
void mergeto(int ot, int& rt) {
if (!ot) return;
mergeto(ch[ot][0], rt);
mergeto(ch[ot][1], rt);
//ch[ot][0] = ch[ot][1] = 0;
insert(rt, ot, 1);
}
void connect(int u, int v) {
int fu = find(u), fv = find(v);
if (fu != fv) {
if (sz[root[fu]] > sz[root[fv]])
fa[fv] = fu, mergeto(root[fv], root[fu]);
else
fa[fu] = fv, mergeto(root[fu], root[fv]);
}
}
int main() {
int u, v, l, r, x, typ, test, a, b, c;
test = read();
for (int cas = 1; cas <= test; cas++) {
printf("Case #%d:\n", cas);
n = read(), m = read();
init();
for (int i = 1; i <= n; i++) {
W[i] = read();
insert(root[i], W[i], 0);
}
for (int i = 0; i < m; i++) {
typ = read(), u = read();
if (typ == 1) {
v = read();
connect(now[u], now[v]);
//cout << sz[roo t[4]] << endl;
//cout << kth(root[4], 1) << endl;
}
else if (typ == 2) {
v = read();
int fu = find(now[u]);
int fv = find(now[v]);
if (fu == fv) continue;
remove(root[fu], W[now[u]]);
int tmp = W[now[u]];
now[u] = id++;
W[now[u]] = tmp;
insert(root[fv], W[now[u]], 0);
fa[now[u]] = fv;
}
else if (typ == 3) {
v = read();
int fu = find(now[u]);
remove(root[fu], W[now[u]]);
W[now[u]] = v;
insert(root[fu], W[now[u]], 0);
}
else if (typ == 4) {
int fu = find(now[u]);
if (sz[root[fu]] <= 2)
printf("%d\n", sz[root[fu]]);
else {
a = kth(root[fu], 1);
b = kth(root[fu], 2);
int res = 2;
while (1) {
c = a + b;
int t = succ(root[fu], c);
if (t == INF) break;
a = b, b = t;
res++;
}
printf("%d\n", res);
}
}
else {
l = read(), r = read();
int fu = find(now[u]);
ans = 0;
query(root[fu], l, r);
if (ans)
printf("%d\n", ans);
else
puts("-1");
}
}
}
return 0;
}
版权声明:本文为tjdrn原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。