最近在做整理。
这是一个比较好的学习博客:https://blog.csdn.net/ydd97/article/details/47805419
欧拉函数:φ(n)表示从1~n-1中有多少个数与n互素。 φ(1) = 1
-
方法1:求单个数的欧拉函数
我们首先应该要知道欧拉函数的通项公式:φ(n)=n*(1-1/p1)*(1-1/p2)*(1-1/p3)*(1-1/p4)…..(1-1/pn),其中pi为n的质因数
long long eular(long long n)
{
long long ans = n;
for(int i = 2; i*i <= n; i++)
{
if(n % i == 0)
{
ans -= ans/i; //等价于通项,把n乘进去
while(n % i == 0) //确保下一个i是n的素因数
n /= i;
}
}
if(n > 1)ans -= ans/n; //最后可能还剩下一个素因数没有除
return ans;
}
-
方法2: 打表求欧拉函数
void euler()
{
for(int i=2;i<maxn;i++){
if(!phi[i])
for(int j=i;j<maxn;j+=i){
if(!phi[j]) phi[j]=j;
phi[j]=phi[j]/i*(i-1);
}
}
}
-
方法3: 欧拉筛素数同时求欧拉函数
void get_phi()
{
int i, j, k;
k = 0;
for(i = 2; i < maxn; i++)
{
if(is_prime[i] == false)
{
prime[k++] = i;
phi[i] = i-1;
}
for(j = 0; j<k && i*prime[j]<maxn; j++)
{
is_prime[ i*prime[j] ] = true;
if(i%prime[j] == 0)
{
phi[ i*prime[j] ] = phi[i] * prime[j];
break;
}
else
{
phi[ i*prime[j] ] = phi[i] * (prime[j]-1);
}
}
}
}
欧拉函数的性质:
①N>1,不大于N且和N互素的所有正整数的和是 1/2*N*eular(N)。 推荐题目:HDOJ 3501 题解:点击打开链接
②若(N%a==0 && (N/a)%a==0) 则有:E(N)=E(N/a)*a;
③若(N%a==0 && (N/a)%a!=0) 则有:E(N)=E(N/a)*(a-1);