最近因为一些原因重新回到了java的怀抱,作为自己的第一个自学的纯面向对象的语言,对它的感情其实还是蛮深的,最近又在课上听到老师说过一个关于矩阵求逆的小程序,自己一时手热边用java完成了关于矩阵的功能。

首先说矩阵,相信很多工科的同胞们都被其饱受折磨。可它的应用范围极广我们也不得不学,总之又爱又恨。关于矩阵类的实现,绝大多数C++程序员是用数组和指针实现的,大部分java工程师也是用数组实现的。而且我在网上搜过相关的博文,大部分人都只完成了int型一种矩阵,笔者这次在JAVA的Vector的前提下完成了int,float,double三种类型的矩阵,也算是对java的容器和数据类型及运算做了一个总结,说实话java确实不适合数据运算,它不支持运算符重载的缺陷型让一些数据计算变得很繁琐。有兴趣的笔友们可以在python或者C++的基础上完成矩阵类的编写。

一,如何实现矩阵类

public Vector data;

    public final static int MAT_INT = 1;
    public final static int MAT_FLOAT = 2;
    public final static int MAT_DOUBLE = 3;
    public int MAT_TYPE = 1;
    public int rows;
    public int cols;

从上面我们可以看到,笔者定义了一个存放矩阵数据的容器,三种矩阵类型参数,分别代表了int,float,double以及代表矩阵类型的MAT_TYPE,我们默认矩阵是int型的,毕竟这种类型最多。另外还有矩阵的大小参数rows,cols即矩阵的行数,列数。

/**
     * @param rows 矩阵的行数,相当于y坐标
     * @param cols 矩阵的列数,相当如x坐标
     * @param type 矩阵的类型,int,float,double三种
     */
    public Mat(int rows, int cols, int type) {
        this.rows = rows;
        this.cols = cols;

        switch (type) {
            case MAT_INT:
                int zerosi = 0;
                data = new Vector<Vector>(rows);
                for (int i = 0; i < rows; i++) {
                    Vector v = new Vector<Integer>(cols);
                    for (int j = 0; j < cols; j++) {
                        v.add(j, zerosi);
                    }
                    data.add(i, v);
                }
                break;
            case MAT_FLOAT:
                float zerosf = 0;
                this.MAT_TYPE = 2;
                data = new Vector<Vector>(rows);
                for (int i = 0; i < rows; i++) {
                    Vector v = new Vector<Float>(cols);
                    for (int j = 0; j < cols; j++) {
                        v.add(j, zerosf);
                    }
                    data.add(i, v);
                }
                break;
            case MAT_DOUBLE:
                this.MAT_TYPE = 3;
                float zerosd = 0;
                data = new Vector<Vector>(rows);
                for (int i = 0; i < rows; i++) {
                    Vector v = new Vector<Double>(cols);
                    for (int j = 0; j < cols; j++) {
                        v.add(j, zerosd);
                    }
                    data.add(i, v);
                }
                break;
            default:
                break;
        }
    }

    public Mat(int rows, int cols) {
        this.rows = rows;
        this.cols = cols;

        int zeros = 0;
        data = new Vector<Vector>(rows);
        for (int i = 0; i < rows; i++) {
            Vector v = new Vector<Integer>(cols);
            for (int j = 0; j < cols; j++) {
                v.add(j, zeros);
            }
            data.add(i, v);
        }
    }

    public Mat() {
        this(5, 5);
    }

    /**
     * @param num 以数组的方式来构造矩阵
     */
    public Mat(int num[][]) {
        this.rows = num.length;
        this.cols = num[0].length;
        this.MAT_TYPE = MAT_INT;

        data = new Vector<Vector>(rows);
        for (int i = 0; i < rows; i++) {
            Vector v = new Vector<Integer>(cols);
            for (int j = 0; j < cols; j++) {
                v.add(j, num[i][j]);
            }
            data.add(i, v);
        }
    }

    public Mat(float num[][]) {
        this.rows = num.length;
        this.cols = num[0].length;
        this.MAT_TYPE = MAT_FLOAT;

        data = new Vector<Vector>(rows);
        for (int i = 0; i < rows; i++) {
            Vector v = new Vector<Float>(cols);
            for (int j = 0; j < cols; j++) {
                v.add(j, num[i][j]);
            }
            data.add(i, v);
        }
    }

    public Mat(double num[][]) {
        this.rows = num.length;
        this.cols = num[0].length;
        this.MAT_TYPE = MAT_DOUBLE;

        data = new Vector<Vector>(rows);
        for (int i = 0; i < rows; i++) {
            Vector v = new Vector<Double>(cols);
            for (int j = 0; j < cols; j++) {
                v.add(j, num[i][j]);
            }
            data.add(i, v);
        }
    }

笔者定义了很多的Mat类的构造函数,包括默认的int型初始化和指定类型的初始化和相应的数组初始化。

/**
     * 输出矩阵中的内容
     */
    public void print() {
        System.out.println("[");
        for (int i = 0; i < rows; i++) {
            Vector v = (Vector) data.get(i);
            for (int j = 0; j < cols; j++) {
                System.out.print(v.get(j) + ",");
            }
            System.out.println();
        }
        System.out.println("]");
    }

    /**
     * 将矩阵中的元素全部置0
     */
    public void zeros() {
        if (MAT_TYPE == MAT_INT) {
            int zerosi = 0;
            for (int i = 0; i < rows; i++) {
                Vector v = (Vector) data.get(i);
                for (int j = 0; j < cols; j++) {
                    v.set(j, zerosi);
                }
                data.set(i, v);
            }
        } else if (MAT_TYPE == MAT_FLOAT) {
            float zerosf = 0;
            for (int i = 0; i < rows; i++) {
                Vector v = (Vector) data.get(i);
                for (int j = 0; j < cols; j++) {
                    v.set(j, zerosf);
                }
                data.set(i, v);
            }
        } else {
            for (int i = 0; i < rows; i++) {
                double zerosd = 0;
                Vector v = (Vector) data.get(i);
                for (int j = 0; j < cols; j++) {
                    v.set(j, zerosd);
                }
                data.set(i, v);
            }
        }
    }

    /**
     * 将矩阵中的元素全部置1
     */
    public void ones() {
        if (MAT_TYPE == MAT_INT) {
            int onesi = 1;
            for (int x = 0; x < rows; x++) {
                Vector v = (Vector) data.get(x);
                for (int y = 0; y < cols; y++) {
                    v.set(y, onesi);
                }
                data.set(x, v);
            }
        } else if (MAT_TYPE == MAT_FLOAT) {
            float onesf = 1;
            for (int i = 0; i < rows; i++) {
                Vector v = (Vector) data.get(i);
                for (int j = 0; j < cols; j++) {
                    v.set(j, onesf);
                }
                data.set(i, v);
            }
        } else {
            for (int i = 0; i < rows; i++) {
                double onesd = 1;
                Vector v = (Vector) data.get(i);
                for (int j = 0; j < cols; j++) {
                    v.set(j, onesd);
                }
                data.set(i, v);
            }
        }
    }

上面我们还可以看到笔者定义了三个很有用的成员函数,print()输出矩阵的内容,zeros()将矩阵数据全部置0,ones将矩阵的数据全部置1。

接下来便是我们矩阵类的核心函数了:

/**
     * 矩阵转置
     */
    public void T() {
        if (MAT_TYPE == MAT_INT) {
            Vector t = new Vector<Vector>(cols);
            for (int i = 0; i < cols; i++) {
                Vector v = new Vector<Integer>(rows);
                for (int j = 0; j < rows; j++) {
                    Vector oldc = (Vector) data.get(j);
                    v.add(j, oldc.get(i));
                }
                t.add(i, v);
            }
            data = t;
            int tmp = this.rows;
            this.rows = this.cols;
            this.cols = tmp;
        } else if (MAT_TYPE == MAT_FLOAT) {
            Vector t = new Vector<Vector>(cols);
            for (int i = 0; i < cols; i++) {
                Vector v = new Vector<Float>(rows);
                for (int j = 0; j < rows; j++) {
                    Vector oldc = (Vector) data.get(j);
                    v.add(j, oldc.get(i));
                }
                t.add(i, v);
            }
            data = t;
            int tmp = this.rows;
            this.rows = this.cols;
            this.cols = tmp;
        } else {
            Vector t = new Vector<Vector>(cols);
            for (int i = 0; i < cols; i++) {
                Vector v = new Vector<Double>(rows);
                for (int j = 0; j < rows; j++) {
                    Vector oldc = (Vector) data.get(j);
                    v.add(j, oldc.get(i));
                }
                t.add(i, v);
            }
            data = t;
            int tmp = this.rows;
            this.rows = this.cols;
            this.cols = tmp;
        }
    }

    /**
     * 设置矩阵中某个坐标的元素内容
     *
     * @param rowindex y坐标
     * @param colindex x坐标
     * @param num      要输入的内容
     */
    public void Set(int rowindex, int colindex, Object num) {
        Vector oldc = (Vector) data.get(rowindex);
        if (MAT_TYPE == MAT_INT) {
            int score = Integer.parseInt(num.toString());
            oldc.set(colindex, score);
        } else if (MAT_TYPE == MAT_FLOAT) {
            float score = Float.parseFloat(num.toString());
            oldc.set(colindex, score);
        } else {
            double score = Double.parseDouble(num.toString());
            oldc.set(colindex, score);
        }
    }

    /**
     * 得到矩阵中某个坐标元素的内容
     *
     * @param rowindex y坐标
     * @param colindex x坐标
     * @return 返回一个object类型
     */
    public Object Get(int rowindex, int colindex) {
        Vector oldc = (Vector) data.get(rowindex);
        return oldc.get(colindex);
    }

    /**
     * 矩阵行列式求值
     *
     * @param num 矩阵的数据,以数组输入
     * @param n   矩阵的行列数
     * @return 返回行列式的值
     */
    public int getvalue(int num[][], int n) {
        int value = 0;
        if (n == 1) return num[0][0];
        int temp[][] = new int[n - 1][n - 1];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n - 1; j++) {
                for (int k = 0; k < n - 1; k++) {
                    int flag;
                    if (j < i) flag = 0;
                    else flag = 1;
                    temp[j][k] = num[j + flag][k + 1];
                }
            }
            int flag2 = -1;
            if (i % 2 == 0) flag2 = 1;
            value += flag2 * num[i][0] * getvalue(temp, n - 1);
        }
        return value;
    }

    /**
     * 矩阵行列式求值
     *
     * @return
     */
    public int dot() {
        if (MAT_TYPE != MAT_INT || rows != cols) {
            return -1;
        }
        int value[][] = new int[rows][cols];
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                Object o = Get(i, j);
                value[i][j] = Integer.parseInt(o.toString());
            }
        }
        int fianl = getvalue(value, rows);
        return fianl;
    }


    /**
     * 矩阵相加
     *
     * @param m1 矩阵1
     * @param m2 矩阵2
     * @return 返回相加的矩阵
     */
    public static Mat add(Mat m1, Mat m2) {
        int outtype = 1;
        if (m1.MAT_TYPE >= m2.MAT_TYPE) {
            outtype = m1.MAT_TYPE;
        } else {
            outtype = m2.MAT_TYPE;
        }

        Mat out = new Mat(m1.rows, m1.cols, outtype);
        if (m1.rows != m2.rows || m1.cols != m1.rows) {
            return null;
        } else {
            for (int i = 0; i < m1.rows; i++) {
                for (int j = 0; j < m1.cols; j++) {
                    Object o1 = m1.Get(i, j);
                    Object o2 = m2.Get(i, j);
                    float f1 = Float.parseFloat(o1.toString());
                    float f2 = Float.parseFloat(o2.toString());
                    float f3 = f1 + f2;
                    out.Set(i, j, f3);
                }
            }
        }
        return out;
    }

    /**
     * 矩阵相加
     *
     * @param m1 被减数矩阵
     * @param m2 减数矩阵
     * @return 返回相减矩阵
     */
    public static Mat sub(Mat m1, Mat m2) {
        int outtype = 1;
        if (m1.MAT_TYPE >= m2.MAT_TYPE) {
            outtype = m1.MAT_TYPE;
        } else {
            outtype = m2.MAT_TYPE;
        }

        Mat out = new Mat(m1.rows, m1.cols, outtype);
        if (m1.rows != m2.rows || m1.cols != m1.rows) {
            return null;
        } else {
            for (int i = 0; i < m1.rows; i++) {
                for (int j = 0; j < m1.cols; j++) {
                    Object o1 = m1.Get(i, j);
                    Object o2 = m2.Get(i, j);
                    float f1 = Float.parseFloat(o1.toString());
                    float f2 = Float.parseFloat(o2.toString());
                    float f3 = f1 - f2;
                    out.Set(i, j, f3);
                }
            }
        }
        return out;
    }

    /**
     * 矩阵相乘
     *
     * @param m1 矩阵1
     * @param m2 矩阵2
     * @return 返回相乘矩阵
     */
    public static Mat mul(Mat m1, Mat m2) {
        //定义输出矩阵的类型,从m1,m2中选出MAT_TYPE较大的类型为输出矩阵的类型
        int outtype = 1;
        if (m1.MAT_TYPE >= m2.MAT_TYPE) {
            outtype = m1.MAT_TYPE;
        } else {
            outtype = m2.MAT_TYPE;
        }
        //按照矩阵的乘法,m1.cols=m2.rows成立时才有意义,输出的矩阵的行数等于m1的行数,列数等于m2的列数
        Mat out = new Mat(m1.rows, m2.cols, outtype);
        if (m1.cols != m2.rows) {
            return null;
        } else {
            //根据判断出的输出矩阵的类型来判断
            switch (outtype) {
                case MAT_INT:
                    int value1[] = new int[m1.cols];//m1每一行的数据存储的数组
                    int value2[] = new int[m2.rows];//m2每一列的数据存储的数组
                    for (int i = 0; i < m1.rows; i++) {
                        for (int col = 0; col < m1.cols; col++) {
                            //得到m1每一行上面的数据存储到数组中
                            Object o1 = m1.Get(i, col);
                            value1[col] = Integer.parseInt(o1.toString());
                        }
                        for (int j = 0; j < m2.cols; j++) {
                            for (int row = 0; row < m2.rows; row++) {
                                //得到m2每一列上的数据存储到数组中
                                Object o2 = m2.Get(row, j);
                                value2[row] = Integer.parseInt(o2.toString());
                            }
                            //输出矩阵上面将要装入的数据
                            int value = 0;
                            //计算输出矩阵上的数据
                            for (int l = 0; l < value1.length; l++) {
                                value += value1[l] * value2[l];
                            }
                            //设置输出矩阵上的数据
                            out.Set(i, j, value);
                        }
                    }
                    break;
                //同上,只是改了数据的类型
                case MAT_FLOAT:
                    float value11[] = new float[m1.cols];
                    float value22[] = new float[m2.rows];
                    for (int i = 0; i < m1.rows; i++) {
                        for (int col = 0; col < m1.cols; col++) {
                            Object o1 = m1.Get(i, col);
                            value11[col] = Float.parseFloat(o1.toString());
                        }
                        for (int j = 0; j < m2.cols; j++) {
                            for (int row = 0; row < m2.rows; row++) {
                                Object o2 = m2.Get(row, j);
                                value22[row] = Float.parseFloat(o2.toString());
                            }
                            float value = 0;
                            for (int l = 0; l < value11.length; l++) {
                                value += value11[l] * value22[l];
                            }
                            out.Set(i, j, value);
                        }
                    }
                    break;
                case MAT_DOUBLE:
                    double value111[] = new double[m1.cols];
                    double value222[] = new double[m2.rows];
                    for (int i = 0; i < m1.rows; i++) {
                        for (int col = 0; col < m1.cols; col++) {
                            Object o1 = m1.Get(i, col);
                            value111[col] = Double.parseDouble(o1.toString());
                        }
                        for (int j = 0; j < m2.cols; j++) {
                            for (int row = 0; row < m2.rows; row++) {
                                Object o2 = m2.Get(row, j);
                                value222[row] = Double.parseDouble(o2.toString());
                            }
                            double value = 0;
                            for (int l = 0; l < value111.length; l++) {
                                value += value111[l] * value222[l];
                            }
                            out.Set(i, j, value);
                        }
                    }
                    break;
                default:
                    break;
            }
        }
        return out;
    }


    /**
     * 矩阵求逆
     * 相当如矩阵除法
     *
     * @param m 输入矩阵
     * @return 返回矩阵的逆矩阵
     */
    public static Mat inv(Mat m) {
        if (m.MAT_TYPE != MAT_INT || m.rows != m.cols) {
            return null;
        }
        int n = m.rows;
        int value[][] = new int[n][n];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                Object o = m.Get(i, j);
                value[i][j] = Integer.parseInt(o.toString());
            }
        }
        int result[][] = value;
        int resultSum = m.getvalue(value, n);
        int temp[][] = new int[n - 1][n - 1];

        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                for (int k = 0; k < n - 1; k++) {
                    for (int g = 0; g < n - 1; g++) {
                        int flag1 = 0;
                        int flag2 = 0;
                        if (k < i) flag1 = 0;
                        else flag1 = 1;
                        if (g < j) flag2 = 0;
                        else flag2 = 1;
                        temp[k][g] = value[k + flag1][g + flag2];
                    }
                }
                int flag3 = -1;
                if ((i + j) % 2 == 0) flag3 = 1;
                result[j][i] = (int) flag3 * m.getvalue(temp, n - 1) / resultSum;
            }
        }
        Mat out = new Mat(result);
        return out;
    }

从上面我们看到矩阵一些所需要的计算和功能,当然除了矩阵求逆,其他一些功能都相对简单,矩阵求逆笔者也参考了很多前辈的算法,可是很难找到一个快速精准的算法。有关上面的程序,笔者上面有相对详细的注释,这里笔者便不累述了,好了一下分享完成的代码:

package PMat;

import java.util.Vector;


public class Mat {
    /**
     * Java实现的矩阵类
     * author:Pedro
     * Date:2017.4.1
     */
    public Vector data;

    public final static int MAT_INT = 1;
    public final static int MAT_FLOAT = 2;
    public final static int MAT_DOUBLE = 3;
    public int MAT_TYPE = 1;
    public int rows;
    public int cols;

    /**
     * @param rows 矩阵的行数,相当于y坐标
     * @param cols 矩阵的列数,相当如x坐标
     * @param type 矩阵的类型,int,float,double三种
     */
    public Mat(int rows, int cols, int type) {
        this.rows = rows;
        this.cols = cols;

        switch (type) {
            case MAT_INT:
                int zerosi = 0;
                data = new Vector<Vector>(rows);
                for (int i = 0; i < rows; i++) {
                    Vector v = new Vector<Integer>(cols);
                    for (int j = 0; j < cols; j++) {
                        v.add(j, zerosi);
                    }
                    data.add(i, v);
                }
                break;
            case MAT_FLOAT:
                float zerosf = 0;
                this.MAT_TYPE = 2;
                data = new Vector<Vector>(rows);
                for (int i = 0; i < rows; i++) {
                    Vector v = new Vector<Float>(cols);
                    for (int j = 0; j < cols; j++) {
                        v.add(j, zerosf);
                    }
                    data.add(i, v);
                }
                break;
            case MAT_DOUBLE:
                this.MAT_TYPE = 3;
                float zerosd = 0;
                data = new Vector<Vector>(rows);
                for (int i = 0; i < rows; i++) {
                    Vector v = new Vector<Double>(cols);
                    for (int j = 0; j < cols; j++) {
                        v.add(j, zerosd);
                    }
                    data.add(i, v);
                }
                break;
            default:
                break;
        }
    }

    public Mat(int rows, int cols) {
        this.rows = rows;
        this.cols = cols;

        int zeros = 0;
        data = new Vector<Vector>(rows);
        for (int i = 0; i < rows; i++) {
            Vector v = new Vector<Integer>(cols);
            for (int j = 0; j < cols; j++) {
                v.add(j, zeros);
            }
            data.add(i, v);
        }
    }

    public Mat() {
        this(5, 5);
    }

    /**
     * @param num 以数组的方式来构造矩阵
     */
    public Mat(int num[][]) {
        this.rows = num.length;
        this.cols = num[0].length;
        this.MAT_TYPE = MAT_INT;

        data = new Vector<Vector>(rows);
        for (int i = 0; i < rows; i++) {
            Vector v = new Vector<Integer>(cols);
            for (int j = 0; j < cols; j++) {
                v.add(j, num[i][j]);
            }
            data.add(i, v);
        }
    }

    public Mat(float num[][]) {
        this.rows = num.length;
        this.cols = num[0].length;
        this.MAT_TYPE = MAT_FLOAT;

        data = new Vector<Vector>(rows);
        for (int i = 0; i < rows; i++) {
            Vector v = new Vector<Float>(cols);
            for (int j = 0; j < cols; j++) {
                v.add(j, num[i][j]);
            }
            data.add(i, v);
        }
    }

    public Mat(double num[][]) {
        this.rows = num.length;
        this.cols = num[0].length;
        this.MAT_TYPE = MAT_DOUBLE;

        data = new Vector<Vector>(rows);
        for (int i = 0; i < rows; i++) {
            Vector v = new Vector<Double>(cols);
            for (int j = 0; j < cols; j++) {
                v.add(j, num[i][j]);
            }
            data.add(i, v);
        }
    }

    /**
     * 输出矩阵中的内容
     */
    public void print() {
        System.out.println("[");
        for (int i = 0; i < rows; i++) {
            Vector v = (Vector) data.get(i);
            for (int j = 0; j < cols; j++) {
                System.out.print(v.get(j) + ",");
            }
            System.out.println();
        }
        System.out.println("]");
    }

    /**
     * 将矩阵中的元素全部置0
     */
    public void zeros() {
        if (MAT_TYPE == MAT_INT) {
            int zerosi = 0;
            for (int i = 0; i < rows; i++) {
                Vector v = (Vector) data.get(i);
                for (int j = 0; j < cols; j++) {
                    v.set(j, zerosi);
                }
                data.set(i, v);
            }
        } else if (MAT_TYPE == MAT_FLOAT) {
            float zerosf = 0;
            for (int i = 0; i < rows; i++) {
                Vector v = (Vector) data.get(i);
                for (int j = 0; j < cols; j++) {
                    v.set(j, zerosf);
                }
                data.set(i, v);
            }
        } else {
            for (int i = 0; i < rows; i++) {
                double zerosd = 0;
                Vector v = (Vector) data.get(i);
                for (int j = 0; j < cols; j++) {
                    v.set(j, zerosd);
                }
                data.set(i, v);
            }
        }
    }

    /**
     * 将矩阵中的元素全部置1
     */
    public void ones() {
        if (MAT_TYPE == MAT_INT) {
            int onesi = 1;
            for (int x = 0; x < rows; x++) {
                Vector v = (Vector) data.get(x);
                for (int y = 0; y < cols; y++) {
                    v.set(y, onesi);
                }
                data.set(x, v);
            }
        } else if (MAT_TYPE == MAT_FLOAT) {
            float onesf = 1;
            for (int i = 0; i < rows; i++) {
                Vector v = (Vector) data.get(i);
                for (int j = 0; j < cols; j++) {
                    v.set(j, onesf);
                }
                data.set(i, v);
            }
        } else {
            for (int i = 0; i < rows; i++) {
                double onesd = 1;
                Vector v = (Vector) data.get(i);
                for (int j = 0; j < cols; j++) {
                    v.set(j, onesd);
                }
                data.set(i, v);
            }
        }
    }

    /**
     * 矩阵转置
     */
    public void T() {
        if (MAT_TYPE == MAT_INT) {
            Vector t = new Vector<Vector>(cols);
            for (int i = 0; i < cols; i++) {
                Vector v = new Vector<Integer>(rows);
                for (int j = 0; j < rows; j++) {
                    Vector oldc = (Vector) data.get(j);
                    v.add(j, oldc.get(i));
                }
                t.add(i, v);
            }
            data = t;
            int tmp = this.rows;
            this.rows = this.cols;
            this.cols = tmp;
        } else if (MAT_TYPE == MAT_FLOAT) {
            Vector t = new Vector<Vector>(cols);
            for (int i = 0; i < cols; i++) {
                Vector v = new Vector<Float>(rows);
                for (int j = 0; j < rows; j++) {
                    Vector oldc = (Vector) data.get(j);
                    v.add(j, oldc.get(i));
                }
                t.add(i, v);
            }
            data = t;
            int tmp = this.rows;
            this.rows = this.cols;
            this.cols = tmp;
        } else {
            Vector t = new Vector<Vector>(cols);
            for (int i = 0; i < cols; i++) {
                Vector v = new Vector<Double>(rows);
                for (int j = 0; j < rows; j++) {
                    Vector oldc = (Vector) data.get(j);
                    v.add(j, oldc.get(i));
                }
                t.add(i, v);
            }
            data = t;
            int tmp = this.rows;
            this.rows = this.cols;
            this.cols = tmp;
        }
    }

    /**
     * 设置矩阵中某个坐标的元素内容
     *
     * @param rowindex y坐标
     * @param colindex x坐标
     * @param num      要输入的内容
     */
    public void Set(int rowindex, int colindex, Object num) {
        Vector oldc = (Vector) data.get(rowindex);
        if (MAT_TYPE == MAT_INT) {
            int score = Integer.parseInt(num.toString());
            oldc.set(colindex, score);
        } else if (MAT_TYPE == MAT_FLOAT) {
            float score = Float.parseFloat(num.toString());
            oldc.set(colindex, score);
        } else {
            double score = Double.parseDouble(num.toString());
            oldc.set(colindex, score);
        }
    }

    /**
     * 得到矩阵中某个坐标元素的内容
     *
     * @param rowindex y坐标
     * @param colindex x坐标
     * @return 返回一个object类型
     */
    public Object Get(int rowindex, int colindex) {
        Vector oldc = (Vector) data.get(rowindex);
        return oldc.get(colindex);
    }

    /**
     * 矩阵行列式求值
     *
     * @param num 矩阵的数据,以数组输入
     * @param n   矩阵的行列数
     * @return 返回行列式的值
     */
    public int getvalue(int num[][], int n) {
        int value = 0;
        if (n == 1) return num[0][0];
        int temp[][] = new int[n - 1][n - 1];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n - 1; j++) {
                for (int k = 0; k < n - 1; k++) {
                    int flag;
                    if (j < i) flag = 0;
                    else flag = 1;
                    temp[j][k] = num[j + flag][k + 1];
                }
            }
            int flag2 = -1;
            if (i % 2 == 0) flag2 = 1;
            value += flag2 * num[i][0] * getvalue(temp, n - 1);
        }
        return value;
    }

    /**
     * 矩阵行列式求值
     *
     * @return
     */
    public int dot() {
        if (MAT_TYPE != MAT_INT || rows != cols) {
            return -1;
        }
        int value[][] = new int[rows][cols];
        for (int i = 0; i < rows; i++) {
            for (int j = 0; j < cols; j++) {
                Object o = Get(i, j);
                value[i][j] = Integer.parseInt(o.toString());
            }
        }
        int fianl = getvalue(value, rows);
        return fianl;
    }


    /**
     * 矩阵相加
     *
     * @param m1 矩阵1
     * @param m2 矩阵2
     * @return 返回相加的矩阵
     */
    public static Mat add(Mat m1, Mat m2) {
        int outtype = 1;
        if (m1.MAT_TYPE >= m2.MAT_TYPE) {
            outtype = m1.MAT_TYPE;
        } else {
            outtype = m2.MAT_TYPE;
        }

        Mat out = new Mat(m1.rows, m1.cols, outtype);
        if (m1.rows != m2.rows || m1.cols != m1.rows) {
            return null;
        } else {
            for (int i = 0; i < m1.rows; i++) {
                for (int j = 0; j < m1.cols; j++) {
                    Object o1 = m1.Get(i, j);
                    Object o2 = m2.Get(i, j);
                    float f1 = Float.parseFloat(o1.toString());
                    float f2 = Float.parseFloat(o2.toString());
                    float f3 = f1 + f2;
                    out.Set(i, j, f3);
                }
            }
        }
        return out;
    }

    /**
     * 矩阵相加
     *
     * @param m1 被减数矩阵
     * @param m2 减数矩阵
     * @return 返回相减矩阵
     */
    public static Mat sub(Mat m1, Mat m2) {
        int outtype = 1;
        if (m1.MAT_TYPE >= m2.MAT_TYPE) {
            outtype = m1.MAT_TYPE;
        } else {
            outtype = m2.MAT_TYPE;
        }

        Mat out = new Mat(m1.rows, m1.cols, outtype);
        if (m1.rows != m2.rows || m1.cols != m1.rows) {
            return null;
        } else {
            for (int i = 0; i < m1.rows; i++) {
                for (int j = 0; j < m1.cols; j++) {
                    Object o1 = m1.Get(i, j);
                    Object o2 = m2.Get(i, j);
                    float f1 = Float.parseFloat(o1.toString());
                    float f2 = Float.parseFloat(o2.toString());
                    float f3 = f1 - f2;
                    out.Set(i, j, f3);
                }
            }
        }
        return out;
    }

    /**
     * 矩阵相乘
     *
     * @param m1 矩阵1
     * @param m2 矩阵2
     * @return 返回相乘矩阵
     */
    public static Mat mul(Mat m1, Mat m2) {
        //定义输出矩阵的类型,从m1,m2中选出MAT_TYPE较大的类型为输出矩阵的类型
        int outtype = 1;
        if (m1.MAT_TYPE >= m2.MAT_TYPE) {
            outtype = m1.MAT_TYPE;
        } else {
            outtype = m2.MAT_TYPE;
        }
        //按照矩阵的乘法,m1.cols=m2.rows成立时才有意义,输出的矩阵的行数等于m1的行数,列数等于m2的列数
        Mat out = new Mat(m1.rows, m2.cols, outtype);
        if (m1.cols != m2.rows) {
            return null;
        } else {
            //根据判断出的输出矩阵的类型来判断
            switch (outtype) {
                case MAT_INT:
                    int value1[] = new int[m1.cols];//m1每一行的数据存储的数组
                    int value2[] = new int[m2.rows];//m2每一列的数据存储的数组
                    for (int i = 0; i < m1.rows; i++) {
                        for (int col = 0; col < m1.cols; col++) {
                            //得到m1每一行上面的数据存储到数组中
                            Object o1 = m1.Get(i, col);
                            value1[col] = Integer.parseInt(o1.toString());
                        }
                        for (int j = 0; j < m2.cols; j++) {
                            for (int row = 0; row < m2.rows; row++) {
                                //得到m2每一列上的数据存储到数组中
                                Object o2 = m2.Get(row, j);
                                value2[row] = Integer.parseInt(o2.toString());
                            }
                            //输出矩阵上面将要装入的数据
                            int value = 0;
                            //计算输出矩阵上的数据
                            for (int l = 0; l < value1.length; l++) {
                                value += value1[l] * value2[l];
                            }
                            //设置输出矩阵上的数据
                            out.Set(i, j, value);
                        }
                    }
                    break;
                //同上,只是改了数据的类型
                case MAT_FLOAT:
                    float value11[] = new float[m1.cols];
                    float value22[] = new float[m2.rows];
                    for (int i = 0; i < m1.rows; i++) {
                        for (int col = 0; col < m1.cols; col++) {
                            Object o1 = m1.Get(i, col);
                            value11[col] = Float.parseFloat(o1.toString());
                        }
                        for (int j = 0; j < m2.cols; j++) {
                            for (int row = 0; row < m2.rows; row++) {
                                Object o2 = m2.Get(row, j);
                                value22[row] = Float.parseFloat(o2.toString());
                            }
                            float value = 0;
                            for (int l = 0; l < value11.length; l++) {
                                value += value11[l] * value22[l];
                            }
                            out.Set(i, j, value);
                        }
                    }
                    break;
                case MAT_DOUBLE:
                    double value111[] = new double[m1.cols];
                    double value222[] = new double[m2.rows];
                    for (int i = 0; i < m1.rows; i++) {
                        for (int col = 0; col < m1.cols; col++) {
                            Object o1 = m1.Get(i, col);
                            value111[col] = Double.parseDouble(o1.toString());
                        }
                        for (int j = 0; j < m2.cols; j++) {
                            for (int row = 0; row < m2.rows; row++) {
                                Object o2 = m2.Get(row, j);
                                value222[row] = Double.parseDouble(o2.toString());
                            }
                            double value = 0;
                            for (int l = 0; l < value111.length; l++) {
                                value += value111[l] * value222[l];
                            }
                            out.Set(i, j, value);
                        }
                    }
                    break;
                default:
                    break;
            }
        }
        return out;
    }


    /**
     * 矩阵求逆
     * 相当如矩阵除法
     *
     * @param m 输入矩阵
     * @return 返回矩阵的逆矩阵
     */
    public static Mat inv(Mat m) {
        if (m.MAT_TYPE != MAT_INT || m.rows != m.cols) {
            return null;
        }
        int n = m.rows;
        int value[][] = new int[n][n];
        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                Object o = m.Get(i, j);
                value[i][j] = Integer.parseInt(o.toString());
            }
        }
        int result[][] = value;
        int resultSum = m.getvalue(value, n);
        int temp[][] = new int[n - 1][n - 1];

        for (int i = 0; i < n; i++) {
            for (int j = 0; j < n; j++) {
                for (int k = 0; k < n - 1; k++) {
                    for (int g = 0; g < n - 1; g++) {
                        int flag1 = 0;
                        int flag2 = 0;
                        if (k < i) flag1 = 0;
                        else flag1 = 1;
                        if (g < j) flag2 = 0;
                        else flag2 = 1;
                        temp[k][g] = value[k + flag1][g + flag2];
                    }
                }
                int flag3 = -1;
                if ((i + j) % 2 == 0) flag3 = 1;
                result[j][i] = (int) flag3 * m.getvalue(temp, n - 1) / resultSum;
            }
        }
        Mat out = new Mat(result);
        return out;
    }
}

版权声明:本文为qq_22636145原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/qq_22636145/article/details/69157278