平稳过程的各态历经性
1.各态历经的定义
如果一个随机过程是平稳的,而且是均值和相关函数都具有各态历经性,那么我们称这个平稳过程具有各态历经性。
- 均值各态历经的定义
<
X
t
>
=
l
.
i
.
m
T
→
∞
1
2
T
∫
−
T
T
X
t
d
t
<X_t>=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}X_tdt
<
X
t
>
<X_t>
<
X
t
>
=
m
x
(
t
)
<X_t>=m_x(t)
- 相关函数各态历经的定义
<
X
t
‾
X
t
+
τ
>
=
l
.
i
.
m
T
→
∞
1
2
T
∫
−
T
T
X
t
‾
X
t
+
τ
d
t
<\overline{X_t}X_{t+\tau}>=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}\overline{X_t}X_{t+\tau}dt
若<
X
t
‾
X
t
+
τ
>
<\overline{X_t}X_{t+\tau}>
<
X
t
‾
X
t
+
τ
>
=
R
x
(
τ
)
<\overline{X_t}X_{t+\tau}>=R_x(\tau)
2.例题
2.1 例1
设
X
t
=
a
c
o
s
(
w
t
+
θ
)
X_t=acos(wt+\theta)
Xt=acos(wt+θ),其中
a
,
w
a,w
a,w均为常数,
θ
\theta
θ服从
[
0
,
2
π
]
[0,2\pi]
[0,2π]上的均匀分布,讨论
X
t
X_t
Xt的各态历经性
- 解:
m
x
(
t
)
=
∫
0
2
π
1
2
π
a
c
o
s
(
w
t
+
θ
)
d
t
=
∫
0
2
π
1
2
π
[
a
c
o
s
w
t
c
o
s
θ
−
a
s
i
n
w
t
s
i
n
θ
d
t
=
0
m_x(t)=\int_{0}^{2\pi}\frac{1}{2\pi}acos(wt+\theta)dt=\int_{0}^{2\pi}\frac{1}{2\pi}[acoswtcos\theta -asinwtsin\theta dt=0
R
X
(
t
,
t
+
τ
)
=
∫
0
2
π
1
2
π
a
c
o
s
(
w
t
+
θ
)
a
c
o
s
(
w
t
+
w
τ
+
θ
)
d
t
=
a
2
2
c
o
s
w
t
R_X(t,t+\tau)=\int_{0}^{2\pi}\frac{1}{2\pi}acos(wt+\theta)acos(wt+w\tau+\theta)dt=\frac{a^2}{2}coswt
<
X
t
>
=
l
.
i
.
m
T
→
∞
1
2
T
∫
−
T
T
a
c
o
s
(
w
t
+
θ
)
d
t
=
l
.
i
.
m
T
→
∞
1
2
T
∫
−
T
T
a
[
c
o
s
w
t
c
o
s
θ
−
s
i
n
w
t
s
i
n
θ
d
t
<X_t>=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}acos(wt+\theta)dt=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}a[coswtcos\theta -sinwtsin\theta dt
s
i
n
w
t
sinwt
<
X
t
>
=
l
.
i
.
m
T
→
∞
a
c
o
s
θ
2
T
∫
−
T
T
a
c
o
s
w
t
d
t
=
l
.
i
.
m
T
→
∞
a
c
o
s
θ
2
T
2
a
w
s
i
n
w
T
=
0
<X_t>=l.i.m_{T\rightarrow \infty}\frac{acos\theta}{2T}\int_{-T}^{T}acoswtdt=l.i.m_{T\rightarrow \infty}\frac{acos\theta}{2T}\frac{2a}{w}sinwT=0
<
X
t
‾
X
t
+
τ
>
=
l
.
i
.
m
T
→
∞
1
2
T
∫
−
T
T
a
c
o
s
(
w
t
+
θ
)
a
c
o
s
(
w
t
+
w
τ
+
θ
)
d
t
=
l
.
i
.
m
T
→
∞
a
2
4
T
∫
−
T
T
c
o
s
(
2
w
t
+
w
τ
+
2
θ
)
+
c
o
s
w
τ
d
t
<\overline{X_t}X_{t+\tau}>=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}acos(wt+\theta)acos(wt+w\tau+\theta)dt=l.i.m_{T\rightarrow \infty}\frac{a^2}{4T}\int_{-T}^{T}cos(2wt+w\tau+2\theta)+cosw\tau dt
=
l
.
i
.
m
T
→
∞
a
2
4
w
T
s
i
n
(
2
w
T
+
w
τ
+
2
θ
)
+
a
2
2
c
o
s
w
T
=
a
2
2
c
o
s
w
T
=
R
X
(
t
,
t
+
τ
)
=l.i.m_{T\rightarrow \infty}\frac{a^2}{4wT}sin(2wT+w\tau+2\theta)+\frac{a^2}{2}coswT=\frac{a^2}{2}coswT=R_X(t,t+\tau)
2.2例2
随机过程
X
t
X_t
Xt具有概率分布
P
(
x
=
i
)
=
1
3
,
i
=
1
,
2
,
3
P(x=i)=\frac{1}{3},i=1,2,3
P(x=i)=31,i=1,2,3试讨论
X
t
X_t
Xt的各态历经性。
- 解:
m
x
(
t
)
=
1
×
1
3
+
2
×
1
3
+
3
×
1
3
=
2
,
R
x
(
t
,
t
+
τ
)
=
E
[
X
2
]
=
14
3
m_x(t)=1\times \frac{1}{3}+2\times \frac{1}{3}+3 \times \frac{1}{3}=2,Rx(t,t+\tau)=E[X^2]=\frac{14}{3}
<
X
t
>
=
l
.
i
.
m
T
→
∞
1
2
T
∫
−
T
T
X
t
d
t
=
X
t
≠
m
x
(
t
)
<X_t>=l.i.m_{T\rightarrow \infty}\frac{1}{2T}\int_{-T}^{T}X_tdt=X_t\neq m_x(t)
<Xt>=l.i.mT→∞2T1∫−TTXtdt=Xt=mx(t)所以可以得到,该过程不具有各态历经性
3.各态历经性的判定
设
X
=
{
X
t
,
−
∞
<
t
<
+
∞
}
X=\{X_t,-\infty<t<+\infty\}
X={Xt,−∞<t<+∞}是平稳过程,则
X
X
X的均值函数具有各态历经性的充要条件是
l
i
m
T
−
>
+
∞
1
2
T
∫
−
2
T
2
T
(
1
−
∣
τ
∣
2
T
)
C
x
(
τ
)
d
τ
=
0
lim_{T->+\infty}\frac{1}{2T}\int_{-2T}^{2T}(1-\frac{|\tau|}{2T})C_x(\tau)d\tau=0
limT−>+∞2T1∫−2T2T(1−2T∣τ∣)Cx(τ)dτ=0
积分积分不会求😅😅😅😅😅😅😅
未完待续