1-效果图
**
2-实现代码
**
import onnxruntime
from torchvision import transforms
import cv2 as cv
import time
import numpy as np
img_transform = transforms.Compose([transforms.ToTensor(),
transforms.Resize((640, 640))
])
# pip install onnxruntime-gpu==1.7 -i https://pypi.tuna.tsinghua.edu.cn/simple
def load_classes():
with open("classes.txt", "r") as f:
class_list = [cname.strip() for cname in f.readlines()]
return class_list
def format_yolov5(frame):
row, col, _ = frame.shape
_max = max(col, row)
result = np.zeros((_max, _max, 3), np.uint8)
result[0:row, 0:col] = frame
result = cv.cvtColor(result, cv.COLOR_BGR2RGB)
return result
def wrap_detection(input_image, output_data):
class_ids = []
confidences = []
boxes = []
# print(output_data.shape)
rows = output_data.shape[0]
image_width, image_height, _ = input_image.shape
x_factor = image_width / 640.0
y_factor = image_height / 640.0
for r in range(rows):
row = output_data[r]
confidence = row[4]
if confidence >= 0.4:
classes_scores = row[5:]
_, _, _, max_indx = cv.minMaxLoc(classes_scores)
class_id = max_indx[1]
if (classes_scores[class_id] > .25):
confidences.append(confidence)
class_ids.append(class_id)
x, y, w, h = row[0].item(), row[1].item(), row[2].item(), row[3].item()
left = int((x - 0.5 * w) * x_factor)
top = int((y - 0.5 * h) * y_factor)
width = int(w * x_factor)
height = int(h * y_factor)
box = np.array([left, top, width, height])
boxes.append(box)
indexes = cv.dnn.NMSBoxes(boxes, confidences, 0.25, 0.45)
result_class_ids = []
result_confidences = []
result_boxes = []
for i in indexes:
result_confidences.append(confidences[i])
result_class_ids.append(class_ids[i])
result_boxes.append(boxes[i])
return result_class_ids, result_confidences, result_boxes
def gpu_ort_demo():
device_name = onnxruntime.get_device()
print(device_name)
class_list = load_classes()
session = onnxruntime.InferenceSession("yolov5s.onnx", providers=['CUDAExecutionProvider'])
# capture = cv.VideoCapture("D:/images/video/sample.mp4")
capture = cv.VideoCapture("testDnn.mp4")
colors = [(255, 255, 0), (0, 255, 0), (0, 255, 255), (255, 0, 0)]
while True:
start = time.time()
_, frame = capture.read()
if frame is None:
print("End of stream")
break
image = format_yolov5(frame)
x_input = img_transform(image).view(1, 3, 640, 640)
ort_inputs = {session.get_inputs()[0].name: x_input.numpy()}
ort_outs = session.run(None, ort_inputs)
out_prob = ort_outs[0]
# print(out_prob.shape)
class_ids, confidences, boxes = wrap_detection(image, out_prob[0])
for (classid, confidence, box) in zip(class_ids, confidences, boxes):
color = colors[int(classid) % len(colors)]
cv.rectangle(frame, box, color, 2)
cv.rectangle(frame, (box[0], box[1] - 20), (box[0] + box[2], box[1]), color, -1)
cv.putText(frame, class_list[classid], (box[0], box[1] - 10), cv.FONT_HERSHEY_SIMPLEX, .5, (0, 0, 0))
end = time.time()
inf_end = end - start
fps = 1 / inf_end
fps_label = "FPS: %.2f" % fps
cv.putText(frame, fps_label, (10, 25), cv.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)
cv.imshow("YOLOv5 + ONNXRUNTIME by gloomyfish", frame)
cc = cv.waitKey(1)
if cc == 27:
break
cv.waitKey(0)
cv.destroyAllWindows()
if __name__ == "__main__":
gpu_ort_demo()
版权声明:本文为yaominh_2017原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。