向量的点积:

假设向量u(ux, uy)和v(vx, vy),u和v之间的夹角为α,从三角形的边角关系等式出发,可作出如下简单推导:

|u – v||u – v| = |u||u| + |v||v| – 2|u||v|cosα  

===>

(ux – vx)2 + (uy – vy)2 = ux2 + uy2 +vx2+vy2- 2|u||v|cosα

===>
  
   -2uxvx – 2uyvy = -2|u||v|cosα

===>

   cosα = (uxvx + uyvy) / (|u||v|)

这样,就可以根据向量u和v的坐标值计算出它们之间的夹角。

定义u和v的点积运算: u . v = (uxvx + uyvy),

上面的cosα可简写成: cosα = u . v / (|u||v|)

当u . v = 0时(即uxvx + uyvy = 0),向量u和v垂直;当u . v > 0时,u和v之间的夹角为锐角;当u . v < 0时,u和v之间的夹角为钝角。

可以将运算从2维推广到3维。

 

向量的叉积:

假设存在向量u(ux, uy, uz), v(vx, vy, vz), 求同时垂直于向量u, v的向量w(wx, wy, wz).

因为w与u垂直,同时w与v垂直,所以w . u = 0, w . v = 0; 即

uxwx + uywy + uzwz = 0;
vxwx + vywy + vzwz = 0;

分别削去方程组的wy和wx变量的系数,得到如下两个等价方程式:

(uxvy – uyvx)wx = (uyvz – uzvy)wz
(uxvy – uyvx)wy = (uzvx – uxvz)wz

于是向量w的一般解形式为:

w = (wx, wy, wz) = ((uyvz – uzvy)wz / (uxvy – uyvx), (uzvx – uxvz)wz / (uxvy – uyvx), wz)
= (wz / (uxvy – uyvx) * (uyvz – uzvy, uzvx – uxvz, uxvy – uyvx))

因为:

   ux(uyvz – uzvy) + uy(uzvx – uxvz) + uz(uxvy – uyvx)
= uxuyvz – uxuzvy + uyuzvx – uyuxvz + uzuxvy – uzuyvx
= (uxuyvz – uyuxvz) + (uyuzvx – uzuyvx) + (uzuxvy – uxuzvy)  
= 0 + 0 + 0 = 0

   vx(uyvz – uzvy) + vy(uzvx – uxvz) + vz(uxvy – uyvx)  
= vxuyvz – vxuzvy + vyuzvx – vyuxvz + vzuxvy – vzuyvx
= (vxuyvz – vzuyvx) + (vyuzvx – vxuzvy) + (vzuxvy – vyuxvz)
= 0 + 0 + 0 = 0

由此可知,向量(uyvz – uzvy, uzvx – uxvz, uxvy – uyvx)是同时垂直于向量u和v的。

为此,定义向量u = (ux, uy, uz)和向量 v = (vx, vy, vz)的叉积运算为:u x v = (uyvz – uzvy, uzvx – uxvz, uxvy – uyvx)

上面计算的结果可简单概括为:向量u x v垂直于向量u和v。

根据叉积的定义,沿x坐标轴的向量i = (1, 0, 0)和沿y坐标轴的向量j = (0, 1, 0)的叉积为:

i x j = (1, 0, 0) x (0, 1, 0) = (0 * 0 – 0 * 1, 0 * 0 – 1 * 0, 1 * 1 – 0 * 0) = (0, 0, 1) = k

同理可计算j x k:

j x k = (0, 1, 0) x (0, 0, 1) = (1 * 1 – 0 * 0, 0 * 0 – 0 * 1, 0 * 0 – 0 * 0) = (1, 0, 0) = i

以及k x i:

k x i = (0, 0, 1) x (1, 0, 0) = (0 * 0 – 1 * 0, 1 * 1 – 0 * 0, 0 * 0 – 0 * 0) = (0, 1, 0) = j

由叉积的定义,可知:

v x u = (vyuz – vzuy, vzux – vxuz, vxuy – vyux) = – (u x v)

本文来自CSDN博客,转载请标明出处: http://blog.csdn.net/c30gcrk/archive/2009/03/17/3997945.aspx