一、雅各比

雅各比矩阵式多元形式的导数,假设有以下3个函数,每个函数有6个自变量:

y

1

=

f

1

(

x

1

,

x

2

,

x

3

)

y

2

=

f

2

(

x

1

,

x

2

,

x

3

)

y

3

=

f

3

(

x

1

,

x

2

,

x

3

)

\begin{aligned} &y_1 = f_1(x_1, x_2, x_3) \\ \\ &y_2 = f_2(x_1, x_2, x_3) \\\\ &y_3 = f_3(x_1, x_2, x_3) \end{aligned}

y1=f1(x1,x2,x3)y2=f2(x1,x2,x3)y3=f3(x1,x2,x3)

写成矩阵的形式:

Y

=

F

(

x

)

Y = F(x)

Y=F(x)

其中:

Y

=

[

y

1

y

2

y

3

]

X

=

[

x

1

x

2

x

3

]

Y = \begin{bmatrix}y_1\\y_2\\y_3\end{bmatrix} \quad X = \begin{bmatrix}x_1\\x_2\\x_3\end{bmatrix}

Y=y1y2y3X=x1x2x3

计算

y

i

y_i

yi的微分与

x

i

x_i

xi的微分的函数:

δ

y

1

=

f

1

x

1

δ

x

1

+

f

1

x

2

δ

x

2

+

f

1

x

3

δ

x

3

δ

y

2

=

f

2

x

1

δ

x

1

+

f

2

x

2

δ

x

2

+

f

2

x

3

δ

x

3

δ

y

3

=

f

3

x

1

δ

x

1

+

f

3

x

2

δ

x

2

+

f

3

x

3

δ

x

3

\begin{aligned} &\delta y_1 = \frac{\partial f_1}{\partial x_1}\delta x_1 +\frac{\partial f_1}{\partial x_2}\delta x_2 + \frac{\partial f_1}{\partial x_3}\delta x_3 \\\\ &\delta y_2 = \frac{\partial f_2}{\partial x_1}\delta x_1 +\frac{\partial f_2}{\partial x_2}\delta x_2 + \frac{\partial f_2}{\partial x_3}\delta x_3 \\\\ &\delta y_3 = \frac{\partial f_3}{\partial x_1}\delta x_1 +\frac{\partial f_3}{\partial x_2}\delta x_2 + \frac{\partial f_3}{\partial x_3}\delta x_3 \\\\ \end{aligned}

δy1=x1f1δx1+x2f1δx2+x3f1δx3δy2=x1f2δx1+x2f2δx2+x3f2δx3δy3=x1f3δx1+x2f3δx2+x3f3δx3

写成矩阵形式:

[

δ

y

1

δ

y

2

δ

y

3

]

=

[

f

1

x

1

f

1

x

2

f

1

x

3

f

2

x

1

f

2

x

2

f

2

x

3

f

3

x

1

f

3

x

2

f

3

x

3

]

[

δ

x

1

δ

x

2

δ

x

3

]

\begin{bmatrix}\delta y_1\\\\\delta y_2\\\\\delta y_3\end{bmatrix} = \begin{bmatrix}\frac{\partial f_1}{\partial x_1}&\frac{\partial f_1}{\partial x_2}&\frac{\partial f_1}{\partial x_3}\\\\\frac{\partial f_2}{\partial x_1}&\frac{\partial f_2}{\partial x_2}&\frac{\partial f_2}{\partial x_3}\\\\ \frac{\partial f_3}{\partial x_1}&\frac{\partial f_3}{\partial x_2}&\frac{\partial f_3}{\partial x_3}\end{bmatrix} \begin{bmatrix}\delta x_1\\\\\delta x_2\\\\\delta x_3\end{bmatrix}

δy1δy2δy3=x1f1x1f2x1f3x2f1x2f2x2f3x3f1x3f2x3f3δx1δx2δx3

即:

δ

Y

=

F

X

δ

X

\delta Y = \frac{\partial F}{\partial X}\delta X

δY=XFδX

这里的

F

X

\frac{\partial F}{\partial X}

XF就是雅各比矩阵,记为

J

(

X

)

J(X)

J(X)。对上式两边同时乘时间的微分

δ

t

\delta t

δt,得到:

Y

˙

=

J

(

X

)

X

˙

\dot Y = J(X)\dot X

Y˙=J(X)X˙

二、两轴机械臂

以上述两自由度机械臂为例。我们如何求解关节角速度与机械臂末端的关系呢
在这里插入图片描述

方法一:迭代法求解

我们根据各关节角速度,求解

V

3

V_3,

V3其变换矩阵依次为:

1

0

T

=

[

c

1

s

1

0

0

s

1

c

1

0

0

0

0

1

0

0

0

0

1

]

^0_1T = \begin{bmatrix} c_1 & -s_1 & 0 & 0\\ s_1 & c_1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}

10T=c1s100s1c10000100001

2

1

T

=

[

c

1

s

1

0

l

1

s

1

c

1

0

0

0

0

1

0

0

0

0

1

]

^1_2T = \begin{bmatrix} c_1 & -s_1 & 0 & l_1\\ s_1 & c_1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}

21T=c1s100s1c1000010l1001

3

2

T

=

[

1

0

0

l

2

0

1

0

0

0

0

1

0

0

0

0

1

]

^2_3T = \begin{bmatrix} 1 & 0 & 0 & l_2\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}

32T=100001000010l2001

我们可以依次计算其线速度,角速度,由于坐标系

0

{0}

0是固定在地面上的,因此:

在这里插入图片描述
转换到

0

{0}

0坐标系下:

在这里插入图片描述
至此,我们求解出关节速度与执行器末端线速度的关系。

方法2

根据机械臂的正运动学模型,在已知

θ

1

,

θ

2

\theta_1, \theta_2

θ1,θ2的情况下,可以通过下式求P[x,y]位置:

x

=

L

1

cos

θ

1

+

L

2

c

o

s

(

θ

1

+

θ

2

)

x = L_1\cos\theta_1+ L_2cos(\theta_1 + \theta_2)

x=L1cosθ1+L2cos(θ1+θ2)

y

=

L

1

sin

θ

1

+

L

2

sin

(

θ

1

+

θ

2

)

y = L_1\sin\theta_1 + L_2\sin(\theta_1 + \theta_2 )

y=L1sinθ1+L2sin(θ1+θ2)

其雅各比矩阵为:

J

(

Θ

)

=

[

x

θ

1

x

θ

2

y

θ

1

x

θ

2

]

J(\Theta) = \begin{bmatrix}\frac{\partial x}{\partial \theta_1}&\frac{\partial x}{\partial \theta_2}\\\\\frac{\partial y}{\partial \theta_1}&\frac{\partial x}{\partial \theta_2} \end{bmatrix}

J(Θ)=θ1xθ1yθ2xθ2x

因此:

[

x

˙

y

˙

]

=

J

(

Θ

)

[

θ

˙

1

θ

˙

2

]

\begin{bmatrix}\dot x\\\\\dot y\end{bmatrix} = J(\Theta)\begin{bmatrix}\dot \theta_1\\\\\dot \theta_2\end{bmatrix}

x˙y˙=J(Θ)θ˙1θ˙2


版权声明:本文为weixin_41045354原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
原文链接:https://blog.csdn.net/weixin_41045354/article/details/115602149