一:简介
Stream中有两个个方法collect和collectingAndThen用于对流中的数据进行处理,可以对流中的数据进行聚合操作,如:
- 将流中的数据转成集合类型: toList、toSet、toMap、toCollection
- 将流中的数据(字符串)使用分隔符拼接在一起:joining
- 对流中的数据求最大值maxBy、最小值minBy、求和summingInt、求平均值averagingDouble
- 对流中的数据进行映射处理 mapping
- 对流中的数据分组:groupingBy、partitioningBy
- 对流中的数据累计计算:reducing

public final class Collectors { // 转换成集合 public static Collector> toList(); public static Collector> toSet(); public static Collector> toMap(Function super T, ? extends K> keyMapper, Function super T, ? extends U> valueMapper); public static > Collector toCollection(Supplier collectionFactory); // 拼接字符串,有多个重载方法 public static Collector joining(CharSequence delimiter); public static Collector joining(CharSequence delimiter, CharSequence prefix, CharSequence suffix); // 最大值、最小值、求和、平均值 public static Collector> maxBy(Comparator super T> comparator); public static Collector> minBy(Comparator super T> comparator); public static Collector summingInt(ToIntFunction super T> mapper); public static Collector averagingDouble(ToDoubleFunction super T> mapper); // 分组:可以分成true和false两组,也可以根据字段分成多组 public static Collector>> groupingBy(Function super T, ? extends K> classifier); // 只能分成true和false两组 public static Collector>> partitioningBy(Predicate super T> predicate); // 映射 public static Collector mapping(Function super T, ? extends U> mapper, Collector super U, A, R> downstream); public static Collector reducing(U identity, Function super T, ? extends U> mapper, BinaryOperator op);}
二:示例
流转换成集合
@Testpublic void testToCollection(){ List list = Arrays.asList(1, 2, 3); // [10, 20, 30] List collect = list.stream().map(i -> i * 10).collect(Collectors.toList()); // [20, 10, 30] Set collect1 = list.stream().map(i -> i * 10).collect(Collectors.toSet()); // {key1=value:10, key2=value:20, key3=value:30} Map collect2 = list.stream().map(i -> i * 10).collect(Collectors.toMap(key -> "key" + key/10, value -> "value:" + value)); // [1, 3, 4] TreeSet collect3= Stream.of(1, 3, 4).collect(Collectors.toCollection(TreeSet::new));}
@Data@ToString@AllArgsConstructor@RequiredArgsConstructorpublic class User { private Long id; private String username;}@Testpublic void testToMap() { List userList = Arrays.asList( new User(1L, "mengday"), new User(2L, "mengdee"), new User(3L, "mengdy") ); // toMap 可用于将List转为Map,便于通过key快速查找到某个value Map userIdAndModelMap = userList.stream().collect(Collectors.toMap(User::getId, Function.identity())); User user = userIdAndModelMap.get(1L); // User(id=1, username=mengday) System.out.println(user); Map userIdAndUsernameMap = userList.stream().collect(Collectors.toMap(User::getId, User::getUsername)); String username = userIdAndUsernameMap.get(1L); // mengday System.out.println(username);}
集合元素拼接
@Testpublic void testJoining(){ // a,b,c List list2 = Arrays.asList("a", "b", "c"); String result = list2.stream().collect(Collectors.joining(",")); // Collectors.joining(",")的结果是:a,b,c 然后再将结果 x + "d"操作, 最终返回a,b,cd String str= Stream.of("a", "b", "c").collect(Collectors.collectingAndThen(Collectors.joining(","), x -> x + "d"));}
元素聚合
@Testpublic void test(){ // 求最值 3 List list = Arrays.asList(1, 2, 3); Integer maxValue = list.stream().collect(Collectors.collectingAndThen(Collectors.maxBy((a, b) -> a - b), Optional::get)); // 最小值 1 Integer minValue = list.stream().collect(Collectors.collectingAndThen(Collectors.minBy((a, b) -> a - b), Optional::get)); // 求和 6 Integer sumValue = list.stream().collect(Collectors.summingInt(item -> item)); // 平均值 2.0 Double avg = list.stream().collect(Collectors.averagingDouble(x -> x));}
@Testpublic void test(){ // 映射:先对集合中的元素进行映射,然后再对映射的结果使用Collectors操作 // A,B,C Stream.of("a", "b", "c").collect(Collectors.mapping(x -> x.toUpperCase(), Collectors.joining(",")));}
分组
public class User { private Long id; private String username; private Integer type; // Getter & Setter & toString}@Testpublic void testGroupBy(){ List list = Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10); // 奇偶数分组:奇数分一组,偶数分一组 // groupingBy(Function super T, ? extends K> classifier) 参数是Function类型,Function返回值可以是要分组的条件,也可以是要分组的字段 // 返回的结果是Map,其中key的数据类型为Function体中计算类型,value是List类型,为分组的结果 Map> result = list.stream().collect(Collectors.groupingBy(item -> item % 2 == 0)); // {false=[1, 3, 5, 7, 9], true=[2, 4, 6, 8, 10]} System.out.println(result); // partitioningBy 用于分成两组的情况 Map> twoPartiton = list.stream().collect(Collectors.partitioningBy(item -> item % 2 == 0)); System.out.println(twoPartiton); User user = new User(1L, "zhangsan", 1); User user2 = new User(2L, "lisi", 2); User user3 = new User(3L, "wangwu", 3); User user4 = new User(4L, "fengliu", 1); List users = Arrays.asList(user, user2, user3, user4); // 根据某个字段进行分组 Map> userGroup = users.stream().collect(Collectors.groupingBy(item -> item.type)); /** * key 为要分组的字段 * value 分组的结果 * { * 1=[User{id=1, username='zhangsan', type=1}, User{id=4, username='fengliu', type=1}], * 2=[User{id=2, username='lisi', type=2}], * 3=[User{id=3, username='wangwu', type=3}] * } */ System.out.println(userGroup);} // 分组并对分组中的数据统计@Testpublic void testGroupBy2() { Foo foo1 = new Foo(1, 2); Foo foo2 = new Foo(2, 23); Foo foo3 = new Foo(2, 6); List list = new ArrayList<>(4); list.add(foo1); list.add(foo2); list.add(foo3); Map collect = list.stream().collect(Collectors.groupingBy(Foo::getCode, Collectors.summarizingInt(Foo::getCount))); IntSummaryStatistics statistics1 = collect.get(1); IntSummaryStatistics statistics2 = collect.get(2); System.out.println(statistics1.getSum()); System.out.println(statistics1.getAverage()); System.out.println(statistics1.getMax()); System.out.println(statistics1.getMin()); System.out.println(statistics1.getCount()); System.out.println(statistics2.getSum()); System.out.println(statistics2.getAverage()); System.out.println(statistics2.getMax()); System.out.println(statistics2.getMin()); System.out.println(statistics2.getCount());}
累计操作
@Testpublic void testReducing(){ // sum: 是每次累计计算的结果,b是Function的结果 System.out.println(Stream.of(1, 3, 4).collect(Collectors.reducing(0, x -> x + 1, (sum, b) -> { System.out.println(sum + "-" + b); return sum + b; }))); // 下面代码是对reducing函数功能实现的描述,用于理解reducing的功能 int sum = 0; List list3 = Arrays.asList(1, 3, 4); for (Integer item : list3) { int b = item + 1; System.out.println(sum + "-" + b); sum = sum + b; } System.out.println(sum); // 注意reducing可以用于更复杂的累计计算,加减乘除或者更复杂的操作 // result = 2 * 4 * 5 = 40 System.out.println(Stream.of(1, 3, 4).collect(Collectors.reducing(1, x -> x + 1, (result, b) -> { System.out.println(result + "-" + b); return result * b; })));}